Module 2: Chromatography

5th Grade

About the Instructions:

This document is intended for use by classroom teachers, SciTrek leads, and SciTrek volunteers. The document has been composed with input from teachers, leads, volunteers, and SciTrek staff to provide suggestions to future teachers/leads/volunteers. The instructions are not intended to be used as a direct script but were written to provide teachers/leads/volunteers with a guideline to present the information that has worked in the past. Teachers/leads/volunteers should feel free to deviate from the instructions to help students reach the learning objectives of the module. Some places in which you can be creative and mold the program to meet your individual teaching style, or to meet the needs of students in the class are: during class discussions, managing the groups/class, generating alternative examples, and asking students leading questions. However, while running the module make sure to cover all the material each day within the scheduled 60 minutes. In addition, no changes should be made to the academic language surrounding conclusions or the conclusion activity.

Activity Schedule:
There are no scheduling restrictions for this module.

Day 1: Conclusion Assessment/Observations/Variables (60 minutes)
Day 2: Question/Materials Page/Experimental Set-Up/Procedure (60 minutes)
Day 3: Results Table/Experiment/Graph/Conclusion Activity (60 minutes)
Day 4: Conclusion Activity/Conclusion/Question/Materials Page/Experimental Set-Up/Procedure (60 minutes)
Day 5: Results Table/Experiment/Graph/Conclusion (60 minutes)
Day 6: Conclusion/Poster Making (60 minutes)
Day 7: Poster Presentations (60 minutes)
Day 8: Conclusion Assessment/Tie to Standards (60 minutes)

The exact module dates and times are posted on the SciTrek website (http://www.chem.ucsb.edu/scitrek/elementary) under the school/teacher. The times on the website include transportation time to and from the SciTrek office (Chem 1105). Thirty minutes are allotted for transportation before and after the module, therefore, if a module was running from 10-11 then the module times on the website would be from 9:30-11:30.

Student Groups:

For the initial observation (Day 1) students work in three groups of ~ten students each. After Day 1 the groups of ~ten students are further subdivided into three subgroups, ~four students each, to perform their experiments. Students stay in these subgroups for the rest of the module. One volunteer is assigned to help each of the groups (three subgroups). We find these groups work best when they are mixed levels and mixed language abilities.

NGSS Performance Expectation Addressed:

5-PS1-3 Make observations and measurements to identify materials based on their properties.
Learning Objectives:

1. Students will be able to list at least one physical property of a substance.
2. Students will know that mixtures can be separated based on the physical properties of individual substances in the mixture.
3. Students will know that a conclusion is a claim supported by data.
4. Students will be able to classify a statement as claim, data, or opinion.
5. Students will be able to identify appropriate claims and data for a given data set.
6. Students will be able to list at least two ways that they behaved like scientists.

Classroom Teacher Responsibilities:

In order for SciTrek to be sustainable, the program needs to work with teachers on developing their abilities to run student-centered inquiry-based science lessons on their own in their classrooms. As teachers take over the role of SciTrek lead, SciTrek will expand to additional classrooms. Even when teachers lead the modules in their own classrooms, SciTrek will continue to provide volunteers and all of the materials needed to run the module. Below is a sample timeline for teachers to take over the role as the SciTrek lead.

* Groups are made up of ~ten students and are subdivided into three subgroups (~four students), to perform experiments.

1. Module 1 & 2 (year 1)
 a. Classroom Teacher Leads a Group

2. Module 3 & 4 (year 2)
 a. Classroom Teacher Co-Leads the Class (an experienced SciTrek volunteer will be present to help out if needed)
 i. Classroom teacher will be responsible for leading entire class discussions (examples: conclusion activity, tie to standards, etc.).
 ii. Classroom teacher will be responsible for time management.
 iii. Classroom teacher will be responsible for overseeing volunteers and helping any groups that are struggling.
 iv. Classroom teacher will be responsible for all above activities, the SciTrek co-lead will only step in for emergencies.

3. Any Additional Modules (year 3 and beyond)
 a. Classroom Teacher Leads the Class
 i. Classroom teacher will be responsible for leading entire class discussions (examples: conclusion activity, tie to standards, etc.).
 ii. Classroom teacher will be responsible for time management.
 iii. Classroom teacher will be responsible for overseeing volunteers and helping any groups that are struggling.

SciTrek staff will be counting on teacher involvement. Teachers should notify the SciTrek staff if they will not be present on any day(s) of the module. Additional steps can be taken to become a SciTrek lead faster than the proposed schedule above. Contact scitrekadmin@chem.ucsb.edu to learn more.

In addition, teachers are required to come to UCSB for the module orientation, ~one week prior to the start of the module. Contact scitrekadmin@chem.ucsb.edu for exact times and dates, or see our website at http://www.chem.ucsb.edu/scitrek/elementary under your class’ module times. At the orientation, teachers will go over module content, learn their responsibilities during the module, and meet the volunteers that will be helping in their classroom. If you are not able to come to the orientation at UCSB you must complete an online orientation. Failure to do an orientation for the module will result in loss of priority registration for next year.
Prior to the Module (at least 1 week):

1. Come to the SciTrek module orientation at UCSB.

During the Module:

If possible, have a document camera available to the SciTrek lead every day of the module. If you do not have a document camera, please tell the SciTrek staff at orientation.

Day 1:
Have the students’ desks/tables moved into three groups and cleared off. This ensures that each student has a desk during SciTrek activities and that students can begin the module as soon as SciTrek arrives.

Day 2-6:
Have the students’ desks/tables moved into nine groups and cleared off. This ensures that each student has a desk during SciTrek activities and that students can begin the module as soon as SciTrek arrives.

Day 7 - 8:
Have the students’ desks/tables cleared off. The desks/tables do not need to be moved into groups.

Scheduling Alternatives:

Some teachers have expressed interest in giving the students more time to work with the volunteers throughout the module. Below are options that will allow the students more time to work with the volunteers. If you plan to do any of the following options, please inform the SciTrek staff no later than your orientation date (~one week before your module, exact orientation times are found at: http://www.chem.ucsb.edu/scitrek/elementary). This will allow the SciTrek staff to provide you with all needed materials.

Day 1:
If you would like to have more time for your students to make observations and generate variables, you can do the conclusion assessment before SciTrek arrives.

Day 2:
If you would like to have more time for your students to design their experiments, you can do the example question/experimental set-up that is outlined in the introduction before SciTrek arrives.

Day 3:
If you would like to have more time for your students to perform their experiments, you can do one or both of the following activities:
 1) Example graph outlined in the introduction before SciTrek arrives.
 2) Conclusion activity after SciTrek leaves.

Day 4:
If you would like to have more time for your students to redesign their experiments, you can finish the conclusion activity before SciTrek arrives.

Day 5:
If you would like to have more time for your students to perform their experiments and write conclusions, you can do the example conclusion before SciTrek arrives.
Day 7:
If you would like to have more time for your students to discuss their experiments during poster presentations, you may take more time for each presentation and finish the presentations after SciTrek leaves.

Day 8:
If you would like more time for the tie to standards activity, you may give the conclusion assessment before SciTrek arrives.

Note: We **highly recommend** that you complete the conclusion assessment prior to Day 8 of the module.

Materials Used for this Module:

1. Crayons Crayola 8 count
2. Test tubes 25 x 150 mm (VWR Part Number: 47729-586)
3. Corks (Size 10) (Fisher Part Number: 07-781N)
4. Test tube stands (hand made by cutting a 2x4 into 15.5 cm long pieces and drilling four holes with a 1 in drill bit 2.5 cm deep along the center line of the block)
5. Nalgene graduated cylinders 10 ml (Fisher Part Number: 08-572-5A)
6. Chromatography paper (roll 2 cm x 100 m (thickness 0.18mm) cut into 11.5 cm strips) (Fisher Part Number: S47087)
7. Other papers (all papers are cut into 2 cm x 11.5 cm strips) Papers (coffee filter, construction paper, graph paper, newspaper, paper towel, and copy paper)
8. Rulers (Office Depot Part Number: 21215472)
9. MyChron Timers (Fisher Part Number: S65330)
10. Disposable pipets (droppers) (Fisher Part Number: 13-711-7M)
11. Markers
 - Mr. Sketch (red, orange, yellow light green, dark green, light blue, dark blue, purple, light pink, dark pink, black, and brown)
 - Crayola (red, yellow, green, blue, purple, black, and brown)
 - Expo-Overhead pens (red, yellow, green, blue, purple, black, and brown)
 - Sharpie (red, yellow, green, blue, purple, black, and brown)
 - Rose Art (red, yellow, green, blue, purple, black, and brown)
 - Other Black Pens (Bic, Dry Erase, and Paper Mate)
12. Water
13. Rubbing alcohol (RA)
14. White vinegar
15. Dish soap (without dilution the dish soap is too thick to be absorbed by the paper, therefore, a soap solution is made my mixing equal parts of water and dish soap)
16. 1 oz. Plastic cups (Smart and Final) labeled: water, RA, soap, and vinegar
17. Bags with 2 oz. of the following: baking soda, corn starch, salt, and sugar (both labeled with their names and A, B, C, and D) (Uline Part Number: S485)
18. Mixture bags (Mixture 1: bottle containing sand and water; Mixture 2: pieces of rough (2.5 cm x 2.5 cm) and coarse (1 cm x 2 cm) sand paper; and Mixture 3: magnets (refrigerator magnets cut into 1 cm x 3 cm) and card stock (cut into 1 cm x 3 cm))

All printed materials used by SciTrek (student notebooks, materials page, lead picture packet, poster parts, instructions, and nametags) can be made available for use and/or editing by emailing scitrekadmin@chem.ucsb.edu.
Day 1: Conclusion Assessment/Observations/Variables

Schedule:

Introduction (SciTrek Lead) – 2 minutes
Conclusion Assessment (SciTrek Lead) – 10 minutes
Observation Discussion (SciTrek Lead) – 2 minutes
Observations (SciTrek Volunteers) – 26 minutes
Variable Discussion (SciTrek Lead) – 5 minutes
Variables (SciTrek Volunteers) – 12 minutes
Wrap-Up (SciTrek Lead) – 3 minutes

Materials:

(3) Volunteer Boxes:
- □ Student nametags
- □ (12) Student notebooks
- □ Volunteer instructions
- □ Picture of experimental setup
- □ Volunteer lab coat
- □ (2) Pencils
- □ (2) Wet erase markers
- □ Ziploc bag
- □ (2) Rulers
- □ Paper towels
- □ Timer
- □ Water (8 oz.)
- □ Dropper
- □ Test tube with cork
- □ Test tube stand
- □ 10 mL Graduated cylinder
- □ (2) Pieces of chromatography paper with pencil line drawn 2 cm above bottom
- □ Black marker (Mr. Sketch)
- □ (5) Boxes of crayons (8 colors only)

Other Supplies:
- □ (3) Large group notepads
- □ (3) Trays

Lead Box:
- □ (3) Blank nametags
- □ (3) Extra student notebooks
- □ Lead instructions
- □ Chromatography picture packet
- □ Picture of experimental setup
- □ Lead lab coat
- □ (35) Conclusion assessments
- □ Time card
- □ (2) Pencils
- □ (2) Wet erase markers
- □ (3) Markers (orange, green, blue)
- □ (2) Ziploc bags
- □ (2) Rulers
- □ Paper towels
- □ (2) Timers
- □ Water (8 oz.)
- □ (2) Droppers
- □ (2) Test tubes with corks
- □ (2) Test tube stands
- □ (2) 10 mL Graduated cylinders
- □ (4) Pieces of chromatography paper with pencil line drawn 2 cm above bottom
- □ (2) Black markers (Mr. Sketch)
- □ (5) Boxes of crayons (8 colors only)
Notebook Pages and Notepad Pages: (Note: Notebook pages are rectangular and filled out in black and notepad pages are squarer and filled out in blue.)

<table>
<thead>
<tr>
<th>Time</th>
<th>Observations/Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Small black dot on line (2 cm)</td>
</tr>
<tr>
<td>1</td>
<td>Dot turned into a smear (get longer)</td>
</tr>
<tr>
<td>2</td>
<td>Smear got bigger (10 cm)</td>
</tr>
</tbody>
</table>

Experimental Set-Up:
- Graduated cylinder with 2 mL of water
- Paper 11.5 cm long, with line on it at 2 cm
- Black Mr. Sketch pen
- Timer
- 15 boxes of crayons
- Test tube and test tube holder

Observations:

<table>
<thead>
<tr>
<th>Time</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picture</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observations/Measurements:
- Small black dot on line (2 cm)
- Dot turned into a smear (get longer)
- Smear got bigger (10 cm)
- Water went up paper (4 cm)
- Blue, pink, red, orange

Variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>How will changing this variable affect the smear?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pen Type</td>
<td>Different black pens might be made up of different colors, so the smear colors will be different and the height will vary.</td>
</tr>
<tr>
<td>Paper Type</td>
<td>If the paper is thicker, the dot will not travel as far up the paper.</td>
</tr>
<tr>
<td>Liquid Type</td>
<td>If the liquid is thinner, the dot will travel farther up the paper.</td>
</tr>
<tr>
<td>Time</td>
<td>If there is more time, there will be more separation between colors, and the smear will be longer.</td>
</tr>
<tr>
<td>Pen Color</td>
<td>Pens that are different colors will have smears that are the same height, but different colors.</td>
</tr>
</tbody>
</table>
Set-Up:

SciTrek Lead:
If the classroom has a document camera, ask the teacher to use it for the class question (front cover, student notebook). If the classroom does not have a document camera, then write the class question on the board during the variable discussion.

SciTrek Volunteer:
Put your name, the teacher’s name, and your group color on the top of your group notepad.

As students are taking the conclusion assessment, walk around the room and quietly place the students’ nametags, which are in your group box, on each student’s desk.

Once you have passed out the nametags, assemble the experimental set-up (shown in picture below as well as in the experimental set-up picture in your group box) on a tray. Use the following steps to help you with the set-up:
1. Fill a 10 mL graduated cylinder with 2 mL of water.
2. Place the test tube (with cork) in the test tube holder.
3. Set the piece of chromatography paper (with the pencil line drawn at 2 cm from the bottom of the paper), test tube and holder, graduated cylinder with 2 mL of water, black Mr. Sketch marker, paper towel, timer, ruler, and 5 boxes of crayons on the tray.

Introduction:
(2 minutes – Full Class – SciTrek Lead)

“Hi, we are scientists from UCSB and we want to show you what we do as scientists. We will show you an experiment and then you can make observations, come up with a class question, and design your own experiment to help answer the class question. We want to show you that you can do science and have fun.”

If you are a teacher that is leading the class tell your students that they are going to start a long-term science investigation and you have asked some scientists from UCSB to come and help. Allow the UCSB volunteers to introduce themselves and share their majors.

Conclusion Assessment:
(10 minutes – Full Class – SciTrek Lead)

As the students are taking the assessment, the volunteers should get the student nametags out of their group boxes and walk around the room locating their students. Have the volunteers quietly lay each
student’s nametag on their desk. If students do not have their name on their paper remind them to do so. After volunteers have handed out the nametags they should assemble the experimental set-up.

“Before we start with the module we will determine how your ideas on conclusions are developing.” Pass-out the conclusion assessment and tell students to fill out their name, teacher’s name, and date at the top of the assessment. Remind the students that it is important that they fill out this assessment on their own.

For page 1, read the instructions to the students. Then read each of the statements and tell the students to circle if the statement is a claim, data, or opinion. As you are reading the statements walk around the room and verify that students have written their name on the top of the paper.

For page 2, have students circle the changing variable(s), underline the controls, and box information about data collection on the results table. Then have them decide if the group could make a conclusion.

Read step one of the instructions to the students (identify the following statements as either CLAIM or DATA and write a C or D on the line). Then have students fill in if they think statement “a” is a claim or data by writing a C or D on the line. Tell students this is similar to page 1 of the assessment. Read step two of the instructions to the students (look at the results table and circle if the statement is a correct claim, correct data, or incorrect. Statements are INCORRECT if the statement does not agree with the results table or has not been tested). Point to the results table and have students circle what they think is the correct answer for statement “a.” Once they have completed statement “a” move on to the next statement. Read each statement aloud and tell students to write the appropriate letter on the line then circle if the statement is a correct claim, correct data, or incorrect.

Repeat the process for page 3. Read the question at the bottom of page 3 to students and have them fill in the blank. When they are finished, collect the assessments and verify that the students’ names are on the papers.

Observation Discussion:
(2 minutes – Full Class – SciTrek Lead)

Tell the students that scientists make many observations. Ask the class, “What is an observation? What are the types of things that you can record for an observation?” If they have trouble, show them an object and let them make some observations. Turn these specific observations into general features of an observation. Examples of possible general observations are: color, texture, size, weight, temperature, material, etc.

“In this experiment we are going to make observations of a strip of paper at three different times. The first time will be before we put the paper in the test tube with water and the other two times will be after the paper is put in the test tube with water.” Remind them to make both written and illustrated observations in their SciTrek notebooks.

Tell the class they will now get in their groups and make observations. To determine their group, they will need to look at the color of their nametag (orange, blue, or green). Tell each colored group where to go and to bring a pencil.

If a student does not have a nametag, identify the group with the least number of students in it and write the student’s name on one of the extra nametags that are in the lead box using that color of marker.
Observations:
(26 minutes – Groups – SciTrek Volunteers)

Once the students come over to your group, have them sit in boy/girl fashion. Verify the tray is set-up as described in the set-up section. Pass-out a notebook to each student. Have students fill out their name, teacher’s name, group color (color of their name on their nametag: orange, blue, or green), and their volunteer’s name on the front cover of their notebooks. Students will leave the group number and class question blank. Then have students turn to page 2 of their notebook.

As a group, have the students come up with “six observations about the experimental set-up. This should take you no longer than 6 minutes. Observations should be recorded under “Experimental set-up” on the group notepad and then copied into student notebooks. Make sure to record the following observations about the experimental set-up: liquid amount (2 ml), paper height (11.5 cm), line height on paper (2 cm). Encourage students to make other observations (~1 minute) that are not on the group notepad and write them in their personal notebooks. Make sure that students know the container holding the liquid is called a graduated cylinder, and it is used to measure liquid amounts.

With the black Mr. Sketch marker, make a dot in the middle of the line on the paper (the smaller the dot, the better the results). Have students look at the paper and tell them to remember what it looks like because this will be their time 0 observation. Pour the 2 ml of water into the test tube and place the paper into the test tube, cork the system, and start the timer. It is important that this is done prior to having students record their time 0 observations so that enough time passes (~ 3 minutes) between time 0 and time 1. Record 0 seconds under the time because this is when the strip of paper was put into the test tube. Then have students draw a picture of their observations of the paper at time 0. In addition, have students generate written observations/measurements and record these under the time 0 section of the chart on the group notepad and have the students copy this information into their notebook.

After students have completed their time 0 observations, record the time on the timer. This will be time 1 (~3 minutes). DO NOT STOP THE TIMER OR TAKE THE STRIP OUT OF THE TEST TUBE AT TIME 1. Have the students draw a picture of what the paper looks like at time 1. Make sure students draw the picture exactly like the strip of paper in front of them. A common mistake that students make is drawing the dye colors going up from the bottom of the paper instead of up from the line. Allow the students to use the provided crayons for their pictures. After their pictures are complete, make written observations as a group about time 1 and record these on the group notepad and have the students copy this information into their notebook.

After students have completed their time 1 observations, remove the paper and place it on a paper towel on the table. At the same time, stop the timer. Record this time (~7 minutes) for time 2 on the group notepad. Ask the students, “What do you see now that will disappear by tomorrow?” They should respond with the water line. Tell the students in order to know the location of the water we use a pencil to trace the water level. Have the students draw a picture of the strip, including water line, for time 2. Then as a group, have the students come up with written observations and record these on the group notepad. Make sure that in the time 2 observations/measurements section of the chart, students record the height of the smear and the height of the liquid. Have the students copy these observations from the group notepad into their SciTrek notebook.

If there is extra time, have students summarize what happened during the experiment.

An example group notepad/student notebook is shown below; feel free to deviate from the example.
Have each group share one of their observations with the rest of the class.

Review with the class how the dot changed over time. Make sure that by the end of the discussion the students have identified that there was originally a black dot on the line. When the paper was placed in water, the water moved up the paper, the dot separated into several colors, and as more time passed, the separation became larger.

Ask the class what the most interesting observation was. They should reply that the black dot spread out into multiple colors. Tell the class we will then work together to answer the question, “What variables affect smears?” Write this question on the front page of the example notebook under the document camera and have students copy this question onto their notebooks.

Ask the students the following questions:

What does the word “variable” mean to a scientist? (variables are parts of the experiment that you can change)
Do you think that there are multiple variables that will affect the smears? (multiple variables might affect the smears)

Explain that this is why we will need to work as a class to answer the class question: “What variables affect smears?”

Tell the class that they are going to think about variables in the experiment that they could change to help us answer the class question. In addition to generating variables, they should think about how/why these variables might affect the outcome of the experiment. Ask the class to give you a variable that they think might affect the smear, then, have them tell you how/why they think that variable would affect the experiment. Probe them on how they would design an experiment to test if this variable affected the
smear. Finally, have the students make a prediction of the results for the experiment they proposed. Remind students that predictions can be wrong and we will not know the correct answers until we carry out the experiment.

Example: **Variable:** Paper type
Why might this variable affect the smear? Different papers might absorb different amounts of liquid.
How would you test this variable? Get different types of paper and put black dots on them and put them in water.
Prediction: The more absorbent the paper, the larger the smear would be.

Tell the students they will generate more variables and analyze them in their groups.

Variables:
(12 minutes – Groups – SciTrek Volunteers)

As a group, generate a variable and make a prediction about how it will affect the smear. Encourage and challenge students to explain why they think their prediction is correct and how this variable will affect the smear. Repeat this process two more times, record these ideas on the group notepad, and have students copy it into their notebooks. If students have different predictions, they can write their own predictions in their notebooks. Next, students will individually generate additional variables, make predictions about how different values of this variable will affect the smear, and record their ideas in their notebooks. Have students share these ideas with the group.

Prepare one student to share during the group discussion a variable their group came up with and why they think it will affect the smear.

![Variables Table](image-url)
Wrap-Up:
(3 minutes – Full Class – SciTrek Lead)

Have one student from each group share a variable that they generated and how/why they think it will affect the smear. Make sure that students tell you their predictions about how different values of that variable will affect the smear. Challenge students to justify their thinking and explore with them how this might help them design an experiment to answer the class question. For example, if a student’s variable was paper type and they predicted that the more absorbent the paper the bigger the smear, ask the student why they predicted this. One possible answer could be: if the paper is more absorbent, then the paper will take up more liquid, possibly allowing the smear to travel higher. Probe the students deeper by asking them questions such as: if you designed an experiment to test this, do you think it would be easier or harder to see if this variable affected the height of the smear if you had paper types that were similar? Students should respond that it would be harder to see the effects of the variable if they have paper types that were similar. Therefore, they should choose values that are far apart for their experiment. Then ask them to give you an example of a paper that absorbs a lot of water (paper towels) and a paper that does not absorb a lot of water (copy paper).

Tell the students that the next time we meet they will design an experiment to answer a question that they have about this experiment, which will help them learn about the smear.

Clean-Up:

Before you leave, have students attach their nametags to their notebooks and place them in the group box. Put the test tube, liquid in test tube, and graduated cylinder in Ziploc bag and seal. Do not leave the cork in the test tube or put it in the Ziploc bag. Put all of the materials into your group box. Bring all materials back to UCSB. In addition, put your lab coat into your group box. If you would like to divide your group (“ten students) into three subgroups, you can do this by writing a “1,” “2,” or “3” on the top of each student’s notebook to designate their subgroup. Make sure that the subgroups are made up of mixed gender and mixed ability students.

Day 2: Question/Materials Page/Experimental Set-Up/Procedure

Schedule:

Introduction (SciTrek Lead) – 13 minutes
Question (SciTrek Volunteers) – 10 minutes
Materials Page (SciTrek Volunteers) – 7 minutes
Experimental Set-Up (SciTrek Volunteers) – 8 minutes
Procedure (SciTrek Volunteers) – 19 minutes
Wrap-Up (SciTrek Lead) – 3 minutes

Materials:

(3) Volunteer Boxes:

☐ Student nametags
☐ Volunteer lab coat
☐ (2) Pencils
☐ Student notebooks
☐ (3) Materials pages (group color & number indicated)
☐ (2) Red pens
☐ Volunteer instructions
☐ Notepad
Lead Box:

- (3) Blank nametags
- (3) Extra student notebooks
- Lead instructions
- Chromatography picture packet
- Lead lab coat
- (3) Materials pages
- Time card
- (2) Pencils
- (2) Red pens
- (2) Wet erase markers
- (3) Markers (orange, green, blue)
- Notepad

Notebook Pages:

Experimental Considerations:

1. You will only have access to the materials on the materials page.
2. The strips of paper cannot be in the liquid for more than 10 minutes.
3. All strips of paper must be put into the board at the same time.

Changing Variables (Independent Variables):

Discuss with your group how you think each changing variable will affect the smear.

1. **Pen type**
 - Discuss with your group how you think changing pen type will affect the smear.
2. **Dot height**
 - Discuss with your group how you think changing dot height will affect the smear.
3. **Paper type**
 - Discuss with your group how you think changing paper type will affect the smear.

Question

Question our group will investigate:

- If we change the **pen type, dot height, and paper type**

What will happen to the **height and color of the smear**?

Experimental Set-Up

Determine the value of your changing variable(s) (ex: pen color) from the materials page and write the values (ex: blue) for your four trials under each strip of paper.

<table>
<thead>
<tr>
<th>Changing Variable(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pen type</td>
</tr>
<tr>
<td>2. Dot height</td>
</tr>
<tr>
<td>3. Paper type</td>
</tr>
</tbody>
</table>

Controllables (variables you will hold constant):

Determine the variables that you will hold constant and indicate the specific value you will use in all your trials.

<table>
<thead>
<tr>
<th>Test tube</th>
<th>Original paper type</th>
<th>Construction paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>5 min</td>
<td>Pen color</td>
</tr>
<tr>
<td>Liquid amount</td>
<td>5 mL</td>
<td>Pen placement on</td>
</tr>
</tbody>
</table>

SciTrek Member Approval
Set-Up:

SciTrek Lead:
If the classroom has a document camera, ask the teacher to use it for the question (page 4, student notebook), materials page (lead box), experimental set-up (page 5, student notebook), and example day 1 strip (page 1, picture packet). If the classroom does not have a document camera, then tape the example poster-size notebook pages to the front board.

SciTrek Volunteer:
Set out student notebooks to allow students within the same subgroup (same number on front of notebook) to work with each other.
- If students are not in the classroom before SciTrek starts, set out the notebooks where students should sit when they come into the classroom.
- If students are in the classroom before SciTrek starts, set out the notebooks where students should sit during the module, they will move to these spots after the introduction.

Make sure you have three materials pages, each filled out with a group number (1, 2, or 3) and your group’s color. These will be given to students after they complete their question.

Have a red pen available to approve students’ question, experimental set-up, and procedure (pages 4, 5 and 6).

Introduction:
(13 minutes – Full Class – SciTrek Lead)

If needed, while you are doing the introduction have volunteers set out the notebooks/nametags where they would like students to sit. Make sure that students in the same subgroup are sitting next to each
other. Tell students that a notebook will be put on their desk, which is not their notebook and they should not move it.

Ask students what they did during the last meeting with SciTrek, and show them the picture of the example strip (page 1, picture packet) to help remind them. They should reply that they put a black dot on a piece of paper and observed that the dot separated into different colors when the paper absorbed water. In addition, they generated other variables that might affect the smear. Ask the class if they remember the class question they will investigate. They should reply, “What variables affect smears?”

Tell students that one way scientists answer questions is by performing experiments; today they will design an experiment to help answer the class question. Ask the class if they think there are multiple variables that could affect the smear. They should respond that there probably are multiple variables. Therefore, each group is going to generate a smaller question to investigate. Once we put all the groups’ research together, we should be able to answer the class question.

Groups will first generate a question based on the changing variable(s) that they plan to explore. They will then fill out their materials page, which will allow them to determine their experimental set-up. The experimental set-up will help them generate a procedure, or a list of steps that they will follow during their experiment. Tell students that they need to keep a few things in mind when they are going through this process.

Experimental Considerations:
1. You will only have access to the materials on the materials page.
2. The strips of paper cannot be in the liquid for more than 5 minutes.
3. All strips of paper must be put into the liquid at the same time.

Tell students we are now going to generate an example question/experimental set-up together and that you will write it in an example notebook so that they will be able to refer back to it when they are completing the process themselves. Make sure that students DO NOT fill out the example question/experimental set-up in their notebooks.

Tell students for this example experiment, the changing variables will be: pick any two variables (example: pen color and liquid type), then write down the changing variables on the example notebook (page 6) under the document camera. Tell students when they are going through this process in their subgroups they can select one, two, or three changing variable(s).

Show students how to insert the changing variables and what they plan to measure/observe into the question frame to find the question that will be investigated. For the example discussed above the question would be: If we change the pen color and liquid type, what will happen to the height and color of the smear? Explain to students that many times when there is a large question, like our class question, scientists break it down into smaller questions that individual scientists can investigate, and then they compile their work to answer the large question.
Tell them once they have determined their question and have approval, their SciTrek volunteer will give them a materials page for determining the values of their changing variable(s) and controls. Ask students if they know how scientists define controls. Make sure that by the end of the conversation students understand that controls are variables that are held constant during an experiment. For example, if the pen type was Mr. Sketch for all of the trials, then one of their controls would be pen type. These controls and control values can be different than the original experiment that they conducted on day one, but must remain constant throughout all the trials that they do for this experiment.

Show students the materials page and read the first step (Go through the bolded words and circle if it is a changing variable and underline if it is a control.) Go through the bolded words and have students identify if you should underline or circle them. Read steps 2 and 3 on the material page (For variables that are controls, select 1 value. For variables that are changing variables, select 4 values and write the trial letter next to each value.) Read the general materials to students and ask them if they need each one and check the box when they say yes. Go through the remaining items on the materials page. If a variable is a control, then choose a value, such as the original value, example: 2 mL for liquid amount. For variables that are changing variables, allow students to select the values. Make sure students are following all restrictions listed (example: liquid amount may only be 0 mL – 20 mL). Ask students “if we want a narrow or wide range of values for the changing variables and why.” Guide students through selecting a wide range of values for both changing variables. If they choose a value contrary to their experimental design, question them on their reasoning. For example, if they said they wanted to use a wide range of pen colors and they picked red, light pink, dark pink, and orange ask them if these values would allow them to best answer their question. Then allow them to change their values if needed.
Tell students that once they have completed their materials page they will fill out their experimental set-up. First, they will fill out the information on the changing variable(s). Ask students what the changing variables were for our example experiment and show them where to fill them in on the experimental set-up. Only fill in the values for trials A and B. Second, they will fill in information about the controls. Ask students for one of the controls for the example experiment. Show students how to record the control on the left side of the slash (example: liquid amount) and the value of that control on the right side of the slash (example: 2 mL). Have students tell you the controls and values until all of the blanks are filled.

Tell students that once they have their experimental set-up complete they will have it approved by their SciTrek volunteer and then they will write a procedure that they will be able to follow next time. When writing a procedure, they should write all the values of their changing variable(s) and controls as well as what data will be collected. Show students the example procedure step on page 6 of their notebook (put colored dot with Mr. Sketch pens A) red, B) blue, C) green, and D) yellow on original paper at 2 cm.) Once their procedure is completed, they will get it approved by a SciTrek volunteer.

If needed, tell students that they will get into groups and design their experiments. Above is an example of what should be filled out for the experimental set-up during the introduction. Note that several sections are left blank.

Question:

(10 minutes – Subgroups – SciTrek Volunteers)

Have students decide what changing variable(s) they want to explore for their first experiment. If they only have one changing variable do not encourage them to have more and if they have two/three changing variables, do not encourage them to have fewer. Students will analyze their data and then perform an additional experiment to correct any mistakes that they made on their first experiment. Each group should briefly discuss why/how they think each changing variable will affect the smear.
After groups have decided on their changing variable(s), have them fill out their question. When you sign off on their question, give them a materials page with their group color and number designated in the upper right hand corner. An example notebook is shown below.

Materials Page:
(7 minutes – Subgroups – SciTrek Volunteers)

Have subgroups underline their controls and circle their changing variables on the materials page. Then have them use the materials page to determine the values for their changing variable(s) and controls. For the changing variable(s) values, have students write the trial letter next to the value they select. Ask students to justify the values that they have chosen for their changing variable(s) and controls and if these values will make it easier or harder to answer their question.

Make sure that students have picked liquid amounts, dot heights, and times that are within the limitations given on the materials page. An example of a materials page is shown in the experimental set-up section.

Experimental Set-Up:
(8 minutes – Subgroups – SciTrek Volunteers)

Have subgroups use their materials page to fill in their experimental set-ups on page 5 of their notebooks. When you sign off on their experimental set-up, collect the materials page and verify that it is filled out correctly and completely. Having the materials page filled out is essential for students to start their experiments during the next SciTrek visit. An example of an experimental set-up is shown below (right).
Procedure:
(19 minutes – Subgroups – SciTrek Volunteers)

After each subgroup has filled out their experimental set-up, they can start on their procedure (page 6). Keep procedures as brief as possible while still conveying the pertinent information about the experiment (control values, changing variable values, and what data they will collect). An example step if pen color is a changing variable would be: “Put colored dot with Mr. Sketch A) red, B) blue, C) green, and D) yellow on original paper at 2 cm.” Some groups may struggle with writing a procedure. You can have these groups dictate each step while you transcribe them onto a notepad found in your group box. Give this sheet to the students to copy into their notebooks. Once the students have finished, they should raise their hand and get it approved by their SciTrek volunteer. An example procedure can be seen below.
If there is time, have your subgroups fill out the variables and prediction section of the results table (see day 3 for example page). First have students underline the variables that are controls, circle the variables that are changing variables, and box the data collection. When writing in the values make sure that for controls, they only write the value of the control in trial A and then draw a line through the remaining trials and for changing variable(s) they write the values in each of the boxes. They can also make their predictions.

Wrap-Up:
(3 minutes – Full Class – SciTrek Lead)

If there is time, have one student from each group share what question they will investigate. Tell students that on the next SciTrek visit they will start their experiments. Tell students that all of their experiments will help us answer the class question: What variables affect smears?

Clean-Up:

Before you leave, have students attach their nametags to their notebooks and place them in the group box. Place the materials pages on top of the notebooks in your group box. Bring all materials back to UCSB. In addition, put your lab coat into your group box.
Day 3: Results Table/Experiment/Graph/Conclusion Activity

Schedule:

Introduction (SciTrek Lead) – 8 minutes
Results Table (SciTrek Volunteers) – 3 minutes
Experiment (SciTrek Volunteers) – 17 minutes
Graph (SciTrek Volunteers) – 10 minutes
Conclusion Activity (SciTrek Lead) – 20 minutes
Wrap-Up (SciTrek Lead) – 2 minutes

Materials:

(3) Volunteer Boxes:

☐ Student nametags ☐ Notepad ☐ (12) Small cups (labeled with liquid types)
☐ Student notebooks ☐ (6) Rulers ☐ Vinegar
☐ Volunteer instructions ☐ Paper towels ☐ Soap
☐ Volunteer lab coat ☐ Water ☐ Rubbing alcohol
☐ (3) Pencils ☐ (3) Test tube stands
☐ (2) Red pens
(3) Ziploc Bags labeled group 1, 2, and 3 each with the following:
☐ (2) 10 mL Graduated cylinders ☐ (2) Droppers ☐ Paper towel
☐ (4) Corks ☐ Requested strips of paper ☐ Timer
☐ Requested pens ☐ Filled out materials page

Other Supplies:

☐ Box of test tubes ☐ Bucket with lid

Lead Box:

☐ (3) Extra student notebooks ☐ Notepad ☐ Bag 1: lead chromatography supplies ((4) 10 mL graduated cylinders, (10) corks, (8) droppers, (12) small cups (labeled with liquid types), paper towels)
☐ Lead instructions ☐ (6) Rulers ☐ Bag 2: lead chromatography supplies (chromatography paper (minimum 30), 6 paper types (minimum 20 each), 8 different black pens, 5 sets of different colored markers)
☐ Chromatography picture packet ☐ (2) Timers ☐ Vinegar
☐ Lead lab coat ☐ Water ☐ Soap
☐ Time card ☐ (2) Test tube stands ☐ Rubbing alcohol
☐ (2) Pencils
☐ (2) Red pens
☐ (2) Wet erase markers
Results Table

Fill out the chart for each of your trials. If one of the variables is constant for all trials, write the value in bold, and then draw a box through each box indicating that this variable is a control.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Trial A</th>
<th>Trial B</th>
<th>Trial C</th>
<th>Trial D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Tube</td>
<td>Original</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td>5 min.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid Type</td>
<td>12A</td>
<td>vinegar</td>
<td>water</td>
<td>5000cc</td>
</tr>
<tr>
<td>Liquid Amount</td>
<td>5ml</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paper Type</td>
<td>original</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pen Color</td>
<td>black</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device</td>
<td>Mr. Sketch, Expo</td>
<td>BiC</td>
<td>Dry Erase</td>
<td></td>
</tr>
<tr>
<td>Initial Dot Height</td>
<td>1 cm</td>
<td>2 cm</td>
<td>3 cm</td>
<td>4 cm</td>
</tr>
<tr>
<td>Replacement</td>
<td>S</td>
<td>T</td>
<td>S</td>
<td>T</td>
</tr>
</tbody>
</table>

Predictions

<table>
<thead>
<tr>
<th>Data</th>
<th>Trial A</th>
<th>Trial B</th>
<th>Trial C</th>
<th>Trial D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Height (cm)</td>
<td>3.5 cm</td>
<td>4.0 cm</td>
<td>2.0 cm</td>
<td>1.0 cm</td>
</tr>
<tr>
<td>Initial Height (cm)</td>
<td>2.5 cm</td>
<td>3.0 cm</td>
<td>1.0 cm</td>
<td>0.0 cm</td>
</tr>
</tbody>
</table>

Scientific Practices

1. **Directions:** Fill in the missing definitions.
 - **Claim:** A statement that can be tested. The explanation of the data, the first part of a conclusion.
 - **Data:** Evidence collected from experiment(s) (measurements or observations), the second part of a conclusion.

2. **Directions:** Use if the statement is a claim, data, or an opinion.
 - McDonald’s serves burger and Taco Bell serves...
 - Blue is the best color
 - Butterflies that are larger than 5 cm are attracted to bright colors
 - Ice was observed floating on water
 - People buy more pizza than hamburgers
 - The average male blue whale weighs 150,000 lb while the average female blue whale weighs 90,000 lb.
 - The tiger has the most bugs on it

Circles are your initial thoughts and boxes are the correct answers.

3. **Directions:** Draw a line connecting claims with the correct data. If there is no data that supports the claim, do not draw a line.

 - **Claim:** People read more from electronic devices than books.
 - **Data:** A Sony TV gives off 30 lumens of light and a Samsung TV gives off 40 lumens of light.

 - **Claim:** Sony TVs are brighter than Samsung TVs.
 - **Data:** When blue and red paint were mixed, the paint was observed to turn purple.

 - **Claim:** The color purple is made from blue and red.
 - **Data:** Wind turbines produce 6,000 MW of energy and solar panels produce 5,000 MW of energy in California.

 - **Claim:** Wind turbines produce less energy than solar panels in California.
 - **Data:** The speed of light is measured to be 3 x 10^5 ft/s.
Set-Up:

SciTrek Lead:

If the classroom has a document camera, ask the teacher to use it for the filled out results table (page 2, picture packet), graph (page 8, student notebook), and conclusion activity (pages 9 and 10, student notebook). If the classroom does not have a document camera, then tape the example poster-size notebook pages to the front board.

SciTrek Volunteer:

Set out student notebooks.

- If students are not in the classroom before SciTrek starts, set out the notebooks where students should sit when they come into the classroom.
- If students are in the classroom before SciTrek starts, set out the notebooks where students should sit during the module, they will move to these spots after the introduction.

Place the test tubes in the test tube rack and pour all of the liquids that your subgroups needs into the small cups. Have all supplies ready so that you can set them out as soon as your subgroups are ready to start.

Introduction:

(8 minutes – Full Class – SciTrek Lead)

If needed, while you are doing the introduction have volunteers set out the notebooks/nametags where they would like students to sit. Make sure that students in the same subgroup are sitting next to each other. Tell students that a notebook will be put on their desk, which is not their notebook and they should not move it.

Ask the class, “What is the class question that we are investigating?” The students should reply, “What variables affect smears?” Tell them that today they will start their experiment to answer this question. However, before they can start their experiment they need to have their results table completed (some students might have completed this the previous SciTrek visit). Once this is finished they can raise their hands and they will receive their experimental supplies from their volunteer.

Tell students that when they record their data they will make two measurements: the smear height and the liquid height. In addition, they will record any other observations (such as the colors that are observed) in each smear. Show students where they will record these three things on the results table.

Tell the students that once they have collected their data, they will display their measurements on a graph (page 8). Show them how to make a graph using the class data, but make sure they DO NOT copy this data into their notebooks; they will graph their own data. Take out the example results table, page 2 of the picture packet (shown below on left), and put it under the document camera. When graphing the example data only graph the first two data points Tell the students that the question for the example data was, “If we change the pen color and the liquid type, what will happen to the height of the smear?” Tell students that in order to make a graph, you will need to follow the checklist shown on page 8 of the notebook.

Set-up your graph.

Tell students that first we need to set-up the graph before we can plot the data. Remind students to check off each step after they complete it.
☐ Write what you measured (example: smear height (cm)) on the y-axis (vertical).
 Tell students that because your question was about the smear height, you will graph smear height. Write smear height (cm) on the y-axis of the graph. When students do their actual experiment, if none of the dots smear they can go back and modify their question to be what will happen to the liquid height and plot liquid heights instead of smear heights.

☐ Determine an appropriate scale which will allow you to graph all of your data points and write the numbers on the given lines.
 Tell students that we need to make sure that the tallest smear can be plotted on the graph. Ask the students what the tallest smear measured was (7.5 cm) and if we would be able to fit this smear height on the graph if we counted by ones. The students should respond yes. When students make their own graphs, they should only count by halves, ones, or twos. Put the numbers on the graph, making sure that they know to start counting at zero. Make sure that you completely fill out the y-axis numbers to the top of the graph and do not stop numbering after you have passed the largest number that you will graph.

☐ Write your changing variable(s) #1, #2, and #3 (example: liquid type) on the x-axis title (horizontal). Changing variable #2 and #3 will only be filled in if you have 2 or 3 changing variables.
 Ask students what the changing variables were in this experiment. Students should respond liquid type and pen color. Record liquid type as changing variable #1 and pen color as changing variable #2.

☐ On your results table, label your measurements from 1 to 4, with 1 being the trial with the smallest measurement and 4 being the trial with the largest measurement.
 Tell students that graphs are used to see how changing variables affect the measurements. One way to make it easier to find patterns is to graph the data in increasing order. Put the example results table (page 2, picture packet) under the document camera and have students help determine the order that the trials will be graphed (A, D, B then C) and write the appropriate number by each trial.

Plot your data in increasing order.
 Tell students that now that they have determined the order they will graph their data, they need to plot their data in increasing order. To do this, there are a few steps that they need to follow.

☐ Write each of the changing variable values (example: soap) for the trial that you labeled 1 under the first column.
 Ask students which trial was labeled 1. (Trial A) Then ask them what you should write next to liquid type and pen color for the first trial. Write RA for liquid type and red for pen color on the example notebook.

☐ Graph your data for that trial and write the measurement above the bar.
 Ask students what smear height will be graphed for trial A (2 cm). Put your finger at zero and tell the students to tell you to stop once you reach the appropriate level. Once you have reached the level, draw the line, write the number value over the line, and quickly shade below the line. Tell students to look at how fast you filled in the chart and challenge them to fill in their graph faster than you when they graph their own data.
Repeat the process for the other trials. Ask students what the values for the changing variables are for the trial that we will graph next. Write vinegar for liquid type and yellow for pen color on the example notebook. Ask them what the smear height is for this trial (3 cm). Have students help you identify where 3 cm is and then draw a line and write the number over the line. Tell students that you will only graph the first two data points, but in their groups they will graph all four points.

Tell students that they will now fill out their results tables and start their experiments. When they are done with their experiment they can graph their results.

Results Table:

(3 minutes – Subgroups – SciTrek Volunteers)

Have students underline the variables that are controls, circle the variables that are changing variables, and box the data collection. When writing the values, make sure that for controls, they only write the value of the control in trial A and then draw an arrow through the remaining trials; for changing variables, they write the value in each of the boxes.

When students have finished, have them make predictions about the final height of the smear. Have them write a “T” in the box of the trial they think will produce the tallest smear and an “S” in the box of the trial they think will produce the shortest smear. They will leave two of the boxes empty. If they think all trials will be the same height, have them write “same” over all of the boxes. Try to question each group on their thought process behind their predicted heights. See example notebook in Experiment section.
Experiment:
(17 minutes – Subgroups – SciTrek Volunteers)

Once groups have finished their results table give them their requested materials. If students are missing any of their experimental materials, the lead box has extra materials. Make sure that students label their strips A, B, C, and D (in pencil at the top of each strip) so they can tell them apart later. As soon as students are done with their liquids, remove the liquids, graduated cylinders, and droppers and put them in the bucket (please do not put trash in the bucket). It is important to do this as soon as possible so students do not play with or spill their liquids. When the experiment is finished, place all test tubes in the bucket and put the corks, test tube rack, timer, and pens in your group box. Once students have finished their experiments, they can record their findings. Make sure that groups trace the liquid line (with pencil) onto their strips so they can easily see/measure it later if needed. Once students have finished their measurements, make sure they place their strips in a safe place so that they can attached them to their notebook at the end of the day. If your group has things under control, help other subgroups. As soon as they finish their experiment, they can graph their results. An example of a properly filled out results table is shown below on the left.

Graph:
(10 minutes – Subgroups – SciTrek Volunteers)

Help students fill out their graph by having them go through and complete the checklist on page 8. Be sure that students label the y-axis with smear height (or liquid height if needed) and the x-axis with all of their changing variables. If students pick systems in which the dot did not smear they can go back to page 4 and revise their question to, “What will happen to the height of the Liquid?” from, “What will happen to the height of the smear?” Students will need to decide what scale to use on the y-axis. Students can use halves, ones, or twos. To make it easier to see patterns, students should arrange the trials in increasing measurements as done in the example above. In this example, the trials were graphed in the following order: C, D, B, A. Once they have graphed their values, make sure that they write the smear or liquid
height on top of each column so that it is easy to discern the value. An example of a properly filled out graph is shown above on the right.

If students finish early they can start working on the conclusion activity on page 9 of their notebooks by themselves.

Note: If students do not complete their graph by the time the lead starts the conclusion activity it is okay. DO NOT have students go back and finish their graph. These groups will move on to their second experiment after the conclusion activity and will present their second experiment to the class therefore, will not use the first graph.

Conclusion Activity:
(20 minutes – Full Class – SciTrek Lead)

Note: Even if all students are not finished with their graphs it is important to start the conclusion activity at least 15 minutes before the end of the session. Students that do not finish their graph can present their second experiment and therefore, will not need their first graph.

Tell the students to turn to page 9 in their notebooks. Put a blank notebook under the document camera and turn to page 9. Mention that before they analyze their graph and draw a conclusion, it is important that they recognize and understand other’s conclusions.

Ask the class, “What is a conclusion?” After listening to the student’s answers make sure that the students understand that a conclusion is a **claim supported by data**. Write this definition on page 9 of the example notebook for the students to copy.

Tell the students that in order to make a conclusion we need to make sure that we understand the difference between a claim and data. First, read the definition of a claim and the example. Tell the students that a claim is a statement that we can verify by testing. Have the class generate approximately four examples of statements that are claims. After a student suggests a possible claim, ask the class if the possible claim can be verified by testing. Have students hold their thumb up if it is a claim and down if it is not. Then ask someone else in the class to propose how you would test this claim. Several examples are shown below.

Examples:
- Claim: rabbits are faster than mice
 Test: time rabbits and mice running a certain distance
- Claim: giraffes are taller than horses
 Test: measure the heights of horses and giraffes
- Claim: watermelons weigh more than pumpkins
 Test: weigh pumpkins and watermelons

Next, read the definition of data and the example. Note that the example data supports the example claim, therefore, by combining the two statements, a conclusion can be formed. This conclusion would be: Cats, on average, weigh less than dogs because the average weight of a dog is 14 kg and the average weight of a cat is 5 kg. Tell students that data often contains a numerical measurement such as a height (5 m) or a weight (20 kg). Box the measurements in the data. Ask the students if data has to contain a numerical measurement. Explain that data can also be in the form of observations. For example, plants are observed to have greener leaves when in direct light rather than indirect light. When you want to identify if a statement is data look for measurements or words such as **recorded** or **observed** that allow you to know that an experiment was performed. Tell students that when they see data in a statement
they should box it. Have students box 14 kg and 5 kg. Tell them that if it is observational data they will box the word observed.

Ask the students if all statements have to be either a claim or data. Lead students into realizing that some statements are neither a claim nor data; a common example of a statement that is not a claim or data is an opinion statement. Have students generate approximately four examples of opinion statements.

Example: Watermelons taste better than pumpkins. Rabbits are cuter than cats.

Read the directions to part 2 aloud to the class. Tell students to look for clues in the statements to identify if it is a claim, data, or opinion. Read the first statement to students then give them ~15 seconds to circle the answer. Have a student share what they think is the correct answer and why. Have the class vote using thumbs up/thumbs down if they agree/disagree with the student's reasoning. After the class has come to a consensus, tell students that they will now box the correct answer. Remind them not to erase the original answer because then they will be able to see which concepts/categories they are struggling with. Mark the correct answer on the example notebook for students to copy. If the statement is a claim, have the students state what data they would need to collect in order to make a conclusion. If the statement is data, have the students generate a claim that could be supported by that data.

For each statement box any information that is **data**, underline information that is a **control**, and double underline information that is an **opinion**.

Below are the explanations and answers to part 2 letters a-g on page 9.

Letter a: McDonalds served 100 customers and Taco Bell served 75 customers

Data (Data Collected: counted number of people)

What type of statement is this and how do you know?
data because it contains a measurement
What claim could be paired with this statement to make it a conclusion?
McDonalds serves more customers than Taco Bell

Letter b: blue is the best color
Opinion
What type of statement is this and how do you know?
opinion because it contains the word best

Letter c: butterflies that are larger than 15 cm are attracted to bright colors
Claim
What type of statement is this and how do you know?
claim because this is something that you can test
What data would you need to obtain to support the claim?
count the number of butterflies that are larger than 15 cm that land on a bright colored paper compared to the number that land on black or brown paper
Are the numbers that are in this statement a measurement from the experiment?
No, the numbers are describing the experiment, called descriptive numbers. Tell students that descriptive number are controls because they are values that are the same for all trials (write descriptive numbers above).

Letter d: ice was observed floating on water
Data (Data Collected: observed ice and water)
What type of statement is this and how do you know?
data because it contains an observation
What claim could be paired with this statement to make a conclusion?
ice is less dense than water

Letter e: people buy more pizza than hamburgers
Claim
What type of statement is this and how do you know?
claim because it can be tested
What data would you need to obtain to support the claim?
count the number of people that buy pizza and hamburgers in one day

Letter f: the average male blue whale weighs 91,000 kg, while the average female blue whale weighs 122,000 kg
Data (Data Collected: measured the mass of blue whales (female and male))
What type of statement is this and how do you know?
data because it contains a measurement
What claim could be paired with this statement to make a conclusion?
female blue whales weigh more than male blue whales

Letter g: the tastier the fruit the more bugs on the fruit
Opinion
What type of statement is this and how do you know?
opinion because it contains the word tastier

Once part 2 is completed have the students turn to page 10 in their notebooks.

Tell the students that now they are going to practice matching claims with supporting data. Have the students read the statements carefully because not all of the claims will make a match. Instruct them to
only draw lines between the claims that match up with supporting data. Tell the students to work by themselves for the first couple of minutes (~2 minutes) and that afterwards we will go over the answers as a class.

Ask the class if anyone has identified a match and have them give you the number and the letter of the possible match. Read each suggested claim/data match and then ask the rest of the class if they agree/disagree using thumbs up/thumbs down. If they disagree, ask a student to explain. Continue asking students if they are able to make any other connections until all possible matches are made.

Below are correct matches that can be made from this activity.

1. Sony TVs are brighter than Samsung TVs because Sony TVs give off 20 lumens of light and Samsung TVs give off 10 lumens of light.
 This is a correct match because the data clearly supports the claim using numerical values as data to make a conclusion.

2. The color purple is made from blue and red because when blue and red paint were mixed the paint was observed to turn purple.
 This is a correct match because the data clearly supports the claim using an observation to make a conclusion.

Below are incorrect matches that can be made from this activity.

1. Wind turbines produced less energy than solar panels in California because wind turbines produce 6,000 MW of energy and solar panels produce 5,000 MW of energy in California.
 This is an incorrect match because the data does not support the claim. The claim says that less energy is produced in wind turbines, however, the data supports the opposite claim that solar panels produce less energy. Ask students, in order to make a conclusion...
do you think scientists can change the claim or the data? Students should realize that scientists can change their claims but they cannot change their data. In addition, scientists must include all data when generating a claim.

2. More people read from electronic devices than books because the speed of light is measured to be $3 \times 10^8 \text{ m/s}$. This is an incorrect match because the data has nothing to do with and does not support the claim. Therefore, this is an incorrect conclusion.

If there is extra time, you can continue on to the next page of the conclusion activity. For details on how to do this see Day 4.

Wrap-Up:
(2 minutes – Full Class – SciTrek Lead)

Tell students that on the next SciTrek visit they will analyze others scientists’ data to identify appropriate claims and data statements. They will then analyze their data to draw a conclusion. After, they will get to design a second experiment.

Clean-Up:

Before you leave, have students attach their nametags to their notebooks and place them in the group box. Make sure that all of the liquids and dishes are in the bucket and the bucket’s lid is securely fastened. Bring all materials back to UCSB. In addition, put your lab coat into your group box.

Day 4: Conclusion Activity/Conclusion/Question/Materials Page/Experimental Set-Up/Procedure

Schedule:

- Introduction (SciTrek Lead) – 2 minutes
- Conclusion Activity (SciTrek Lead) – 25 minutes
- Conclusion (SciTrek Volunteers) – 5 minutes
- Question (SciTrek Volunteers) – 5 minutes
- Materials Page (SciTrek Volunteers) – 5 minutes
- Experimental Set-Up (SciTrek Volunteers) – 5 minutes
- Procedure (SciTrek Volunteers) – 11 minutes
- Wrap-Up (SciTrek Lead) – 2 minutes
SCIENTIFIC PRACTICES

Conclusions

<table>
<thead>
<tr>
<th>Variable</th>
<th>Trial A</th>
<th>Trial B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper Type</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Liquid Type</td>
<td>Brine</td>
<td>Brine</td>
</tr>
<tr>
<td>Liquid Amount</td>
<td>2 ml</td>
<td>2 ml</td>
</tr>
<tr>
<td>Pen Type</td>
<td>Mr. Sketch</td>
<td>Mr. Sketch</td>
</tr>
<tr>
<td>Initial Dot Height</td>
<td>2 cm</td>
<td>2 cm</td>
</tr>
</tbody>
</table>

Final Observations

<table>
<thead>
<tr>
<th>Measure</th>
<th>Trial A</th>
<th>Trial B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smear Height</td>
<td>3 cm</td>
<td>3 cm</td>
</tr>
<tr>
<td>Liquid Height</td>
<td>5 cm</td>
<td>5 cm</td>
</tr>
</tbody>
</table>

What data can be used to support the claim here?

Making a Conclusion from Your Data

Table A

<table>
<thead>
<tr>
<th>Variables</th>
<th>Trial A</th>
<th>Trial B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brine</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Water</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Mr. Sketch</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

Table B

<table>
<thead>
<tr>
<th>Variables</th>
<th>Trial A</th>
<th>Trial B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brine</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Water</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Mr. Sketch</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

Graph D

- **Conclusions**
 - **Trial A**
 - **Trial B**

Making a Claim from Your Data

IF NO

- **Why:** I cannot make a conclusion because I changed more than one variable in my experiment.

IF YES

- **We can conclude:**
 - **because:** (measurement/observation)

SciTrek Member Approval

Notebook Pages:
Changing Variable(s) (Independent Variable(s))

For your second experiment, decide which variable(s) (max three) that you would like to test:

- Changing Variable 1: ___
- Changing Variable 2 (optional): ___
- Changing Variable 3 (optional): ___

QUESTION

Question our group will investigate:

- If we change the ___

 what will happen to the ___

SciTrek Member Approval ___

Get a materials page from your SciTrek volunteer and fill it out before moving onto the experimental setup.

EXPERIMENTAL SET-UP

Determine the values of your changing variable(s) (ex: pen color) from the materials page and write the values (ex: blue) for your four trials under each strip of paper.

Changing Variable(s):

- E: ___
- F: ___
- G: ___
- H: ___

Controls (variables you will hold constant):

- Determine the variables that you will hold constant and indicate the specific value you will use in all your trials:
 - Test Tube / Original pen type / Mr. Sketch
 - liquid type / water
 - dot height / 2 cm
 - liquid amount / 5 ml
 - time / 4.5 min
 - paper type / original

SciTrek Member Approval ___

PROCEDURE

Procedure Note:

Make sure to include all values of your changing variable(s) in the procedure (example: for a group that decided to change pen color, one step would be: put colored dot with Mr. Sketch pen E (purple), F (light green), G (orange), and H (black) on original paper at 2 cm.)

1. Fill 4 original test tubes with 5 ml of water.

2. Put a dot 2 cm high on original paper with an Ex: purple, F: light green, G: orange, and H: black Mr. Sketch marker.

3. Put papers in test tubes and put cork on.

4. Wait for 45 minutes.

5. Remove papers from test tubes.

6. Measure smear height and observe smear color.

SciTrek Member Approval ___
Materials:

<table>
<thead>
<tr>
<th>(3) Volunteer Boxes:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Student nametags</td>
<td>☐ Volunteer lab coat</td>
<td>☐ (2) Pencils</td>
<td></td>
</tr>
<tr>
<td>☐ Student notebooks</td>
<td>☐ (3) Materials pages (group color/number indicated)</td>
<td>☐ (2) Red pens</td>
<td></td>
</tr>
<tr>
<td>☐ Volunteer instructions</td>
<td></td>
<td>☐ Notepad</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lead Box:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ (3) Extra student notebooks</td>
<td>☐ Lead lab coat</td>
<td>☐ (2) Pencils</td>
<td></td>
</tr>
<tr>
<td>☐ Lead instructions</td>
<td>☐ (3) Materials pages</td>
<td>☐ (2) Red pens</td>
<td></td>
</tr>
<tr>
<td>☐ Chromatography picture packet</td>
<td>☐ Time card</td>
<td>☐ (2) Wet erase markers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐ Notepad</td>
<td></td>
</tr>
</tbody>
</table>

Set-Up:

SciTrek Lead:
If the classroom has a document camera, ask the teacher to use it for the conclusion activity (pages 11-13, student notebook). If the classroom does not have a document camera, then tape example poster-size notebook pages to the front board.

SciTrek Volunteer:
Set out student notebooks.
- If students are not in the classroom before SciTrek starts, set out the notebooks where students should sit when they come into the classroom.
- If students are in the classroom before SciTrek starts, pass-out notebooks to them, they will move to their subgroup seats after the conclusion activity.

Introduction:
(2 minutes – Full Class – SciTrek Lead)

If needed have volunteers hand out the notebooks/nametags to the students in their seats. They will move into their subgroups after the conclusion activity.

Inform students that today they are going to analyze other’s data to determine which claims and data are appropriate for a given set of results. Afterwards, they will analyze their own data to see if they can make a claim/conclusion. They will then have the opportunity to design a second experiment or redesign their first experiment, which will be carried out during the next SciTrek visit.

Conclusion Activity:
(25 minutes – Full Class – SciTrek Lead)

Ask students what types of statements are needed to make a conclusion. Students should tell you that a conclusion is made from a claim and a supporting data statement. Ask students for the definition of a claim. Students should remind you that a claim is the explanation of your data, a statement that can be tested. Ask students what type of information can be used for data. Students should remind you that data can be either measurements or observations.

Tell the students to turn to page 11 in their notebooks. Place a blank notebook under the document camera and open to page 11.
Have students annotate the results table. As a group, identify and then circle the changing variable (pen type), underline the controls (time, liquid type, liquid amount, paper type, pen color, and initial dot height), and box the information about the data collected (smear height, liquid height, and other).

Tell the students that we are now going to look over a list of statements about this results table and decide if each statement is an example of a claim or data. If the statement is data, we will box the data in the statement and if the statement is a claim, we will identify and circle the changing variable. We will then use the results table to tell if the statement is a correct claim, correct data, or incorrect.

First, read the statement and have students classify the statement as claim or data and write the corresponding letter, C or D, on the line. Second, have students help you annotate the statement by circling the changing variable (every claim statement will have a changing variable), underlining controls, and boxing any data. Third, have students check the results table to see if the statement is a correct claim, correct data, or incorrect and circle the appropriate answer. Repeat this process for each statement.

If students are struggling to identify the changing variable, ask them what experiment would need to be carried out to test this claim. From their answer, have them identify what they changed.

Letter a: the **paper type** affects the height the liquid travels up the paper

Claim/Incorrect (Variable Held Constant)

- What type of statement is this and how do you know?
 - Claim because it can be tested (write C on the line)
- What would need to be the changing variable for this claim to be correct?
 - Paper type (circle paper type)
- Is paper type a changing variable in the experiment?
 - No
- What should we circle?
 - Incorrect

Letter b: black **pen types** are made up of different dye colors

Claim/Correct Claim

- What type of statement is this and how do you know?
 - Claim because it can be tested (write C on the line)
- What would need to be the changing variable for this claim to be correct?
 - Pen type (circle pen type)
- Is pen type a changing variable in this experiment?
 - Yes
- Is the claim consistent with the data?
 - Yes
- What should we circle?
 - Correct claim

Letter c: when a **black** dot sits in water for 5 min, different **pen types** give different smear heights

Claim/Correct Claim

- What type of statement is this and how do you know?
 - Claim because it can be tested (write C on the line)
- What would need to be the changing variable for this claim to be correct?
 - Pen type (circle pen type)
- Is the 5 minutes data?
 - No, it is a descriptive number (one of the controls) (underline 5 min)
- Are there any other controls in this statement?
 - Black (underling black)
Is pen type a changing variable in this experiment?
Yes
Is the claim consistent with the data?
Yes
What should we circle?
Correct claim

Letter d: the black Crayola was observed to contain green dye

Data/Incorrect
What type of statement is this and how do you know?
Data because it contains an observation (write D on the line and box green dye)
What is black Crayola?
Black is a control and Crayola is a changing variable (underline black and circle Crayola)
Is the data correct based on the results table?
No
What should we circle?
Incorrect

Tell the students we are now going to determine the data to support claim b. Read claim b aloud (black pen types are made up of different dye colors) and ask the students what data can be used to support this claim. They should respond that black Mr. Sketch was observed to contain green, blue, and red dyes while black Crayola contained yellow, blue, and red dyes. Record this statement in the example notebook. Ask the students how people would know that the statement generated was data. They should reply that it contains observations. In the statement, underline the word “black,” box the words “green, blue, and red dyes” and “yellow, blue, and red dyes” and circle the words “Mr. Sketch” and “Crayola.” Then read the complete conclusion: black pen types are made up of different dye colors because black Mr. Sketch was observed to contain green, blue, and red dyes while black Crayola contained yellow, blue, and red dyes.

If there is time, you can have the students determine the data to support claim c: the smear height for Mr. Sketch was 3 cm while the smear height for Crayola was 2 cm. This is data because it contains a measurement. Box the measurements in the statement and circle the changing variable values.
Have students turn to page 12 in their notebooks. Turn the example notebook to page 12.

Have students annotate the results table. As a group identify and then circle the changing variables (time, liquid type, and pen color), underline the controls (liquid amount, paper type, pen type, and initial dot height), and box the information about the data collected (smear height, liquid height, and other).

Tell the students that we are now going to go through the same process that we went through for the statements about the last results table.

Letter a: the stronger the **pen odor** the larger the smear height

Claim/Incorrect (No Data Gathered)

What type of statement is this and how do you know?

Claim because it can be tested (write C on the line)

What would need to be the changing variable for this claim to be correct?

Pen odor (circle pen odor)

Is pen odor a changing variable in this experiment?

No

What should we circle?

Incorrect

Letter b: the **black** pen had a smear height of 3 cm and the **red** pen had a smear height of 1.5 cm

Data/Correct Data

What type of statement is this and how do you know?

Data because it contains measurements (write D on the line and box 3 cm and 1.5 cm)

What are black and red?

Black and red are both changing variables (circle black and red)

Is the data correct based on the results table?

Yes
What should we circle?
Correct data

Letter c: black and red pens are made from green dye

Claim/Incorrect (Inconsistent with Data)

What type of statement is this and how do you know?
Claim because it can be tested (write C on the line)

What would need to be the changing variable for this claim to be correct?
Pen color (circle black and red pens and write pen color over the statement)

Is pen color a changing variable in this experiment?
Yes

Is the claim consistent with the data?
No

What should we circle?
Incorrect

Letter d: the thicker the liquid the shorter the smear height

Claim/Incorrect (More than One Changing Variable)

What type of statement is this and how do you know?
Claim because it can be tested

What would need to be the changing variable for this claim to be correct?
Liquid type (circle thicker the liquid and write liquid type above the statement)

Is liquid type a changing variable in this experiment?
Yes

Is the claim consistent with the data?
Yes

Is this claim fair or could the smear height be changing because of another reason?
This claim is not fair because the smear height could have changed as a result of changing the time or the pen color

What should we circle?
Incorrect

Ask the students why no claims can be made from the data. They should say that because there is more than one changing variable and you cannot tell which variable affected the results or how/why these changing variables affected the smear. Record this answer on the example notebook and have students copy this into their notebooks.

Ask the students if they think they would be able to make a conclusion when a claim cannot be made from the data. Since a conclusion is defined as a claim supported by data, you would need both a claim and data to make a conclusion. Since no claims can be made, a conclusion cannot be made either. Have students check the “no” box in their notebook.
Ask the students what they learned about conclusions from this activity. Make sure by the end of the conversation that students understand that in order to draw a conclusion, they must only have one changing variable.

Tell students they are now going to look at three results tables and one graph and determine which data sets would allow them to make a claim/conclusion. As a class go through each table/graph and circle the changing variable(s), underline the controls, and box information about data collection. Then have students decide if that group could make a claim/conclusion before moving to the next table/graph.
Ask students the following questions:

Table A

What is/are the changing variable(s)?
- Time, pen type, and liquid amount

How many changing variables are there?
- Three

Can a claim/conclusion be made from this data?
- No

Why not?
- This experiment had three changing variables and conclusions/claims can only be made when there is one changing variable.

Table B

What is/are the changing variable(s)?
- Paper type

How many changing variables are there?
- One

Can a claim/conclusion be made from this data?
- Yes

Did the paper type affect the smear height?
- Yes
Table C
What is/are the changing variable(s)?
 Pen type
How many changing variables are there?
 One
Can a claim/conclusion be made from this data?
 Yes
Did the pen type effect the smear height?
 No

Graph D
What is/are the changing variable(s)?
 Pen color and liquid amount
How many changing variables are there?
 Two
Can a claim/conclusion be made from this data?
 No
Why not?
 This experiment had two changing variables and conclusions/claims can only be made when there is one changing variable.

Tell students that tables (such as tables A-C) and graphs (such as graph D) represent two different ways of displaying results from an experiment. Ask the students what the advantages and disadvantages are for tables versus graphs. Students should realize that viewing the data in table form yields a complete idea about what experiment was conducted and which controls were used. However, it is harder to see patterns in the data. Alternatively, viewing the data in graph form allows patterns and trends to be viewed but does not display the controls the experimenter used.

Tell students that they will now analyze their data to see if they can make a conclusion. Remind them that it is okay if they cannot draw a conclusion from their first experiment because they will have the opportunity to run another experiment in which they should only have one changing variable so that they will be able to draw a conclusion.

Inform students that once they have decided if they can/cannot make a conclusion, they will either state why they cannot make a conclusion or use their results to make a conclusion. Once this is complete, they can move on to designing their new experiment. Tell them that they are going to give poster presentations at the end of the module and the presentations will be more interesting if there are a wide range of changing variables that have been tested. In addition, if a wide range of variables are chosen, the class question (What variables affect smears?) will be more completely answered. Therefore, they should try to explore a changing variable that they think no one else in the class is investigating.

Tell students they will start working with their group to analyze their old experiment and start their new experiment.

Conclusion:
(5 minutes – Subgroups – SciTrek Volunteers)

Help groups fill out page 14 of their notebook. If the group has more than one changing variable they will not be able to draw a conclusion. An example of when the students cannot make a conclusion is shown below on the left.
If the group has only one changing variable, they will be able to make a conclusion. Make sure that the students’ conclusions have both a claim and supporting data and that these statements are in the appropriately labeled sections. Claims must be something that can be tested and data statements must include either an observation or a measurement. Conclusions are still valid, and important, if they show that the changing variable tested did not affect the smear. Even if their conclusion is contrary to what you think, have students make a claim based solely on their data. If you think that their data is flawed it is okay to ask them what they think went wrong, and encourage them to repeat their experiment. An example of when the students can make a conclusion is shown below on the right.

Question:

(5 minutes – Subgroups – SciTrek Volunteers)

Have students decide what changing variable they want to explore for their second experiment. Make sure each group has only one changing variable so they will be able to make a claim/conclusion after their experiment. Encourage your subgroups to have different changing variables.

After groups have decided on their changing variable, have them fill out their question. When you sign off on their question, give them a materials page with their group color and number designated in the upper right hand corner. An example notebook is shown below.
Have subgroups underline their controls and circle their changing variable on the materials page. Then have them use the materials page to determine the values for their changing variable and controls. For the changing variable values, have students write the trial letter next to the values they select. Ask students to justify the values that they have chosen for their changing variable and controls and if these values will make it easier or harder to answer their question.

Make sure that students have picked liquid amounts, dot heights, and times that are within the limitations given on the materials page. An example of a materials page is shown in the Experimental Set-Up section.

Experimental Set-Up:
(5 minutes – Subgroups – SciTrek Volunteers)

Have subgroups use the materials page to fill in their experimental set-up on page 16 of their notebooks. When you sign off on their experimental set-up, collect the materials page and verify that it is filled out correctly and completely. Having the materials pages filled out is essential for students to start their experiments during the next SciTrek visit. An example of an experimental set-up and materials page are shown below.
Procedure:

(11 minutes – Subgroups – SciTrek Volunteers)

After each subgroup has filled out their experimental set-up, they can start on their procedure (page 17). Keep procedures as brief as possible while still conveying the pertinent information about the experiment. Make sure that you have students include all changing variable values in the procedure. For example, if pen color is a changing variable, one of the procedure steps would be: “Put colored dot with Mr. Sketch pen E) red, F) blue, G) green, and H) yellow on original paper at 2 cm.” Some groups may struggle with writing a procedure. If they are having problems with their procedure, they should look back at their initial procedure on page 6 of their notebook. If they are still having trouble, you can have these groups dictate each step while you transcribe them onto a notepad found in the group box. Give this sheet to the students to copy into their notebooks. Once the students finish, they should raise their hand and get it approved by their volunteer. An example procedure can be seen below.

If groups have extra time you can have them fill out their results table.
Tell the students that during the next SciTrek visit they will carry out the experiments that they designed today.

Clean-Up:

Before you leave, have students attach their nametags to their notebooks and place them in the group box. Place the materials pages on top of the notebooks in your group box. Bring all materials back to UCSB. In addition, put your lab coat into your group box.

Day 5: Results Table/Experiment/Graph/Conclusion

Schedule:

- Introduction (SciTrek Lead) – 20 minutes
- Results Table (SciTrek Volunteers) – 5 minutes
- Experiment (SciTrek Volunteers) – 20 minutes
- Graph (SciTrek Volunteers) – 5 minutes
- Conclusion (SciTrek Volunteers) – 8 minutes
- Wrap-Up (SciTrek Lead) – 2 minutes
Materials:

(3) Volunteer Boxes:
- ☐ Student nametags
- ☐ Student notebooks
- ☐ Volunteer instructions
- ☐ Volunteer lab coat
- ☐ (3) Pencils
- ☐ (2) Red pens
- ☐ (3) Ziploc Bags labeled group 1, 2, and 3 each with the following:
 - ☐ (2) 10 mL Graduated cylinders
 - ☐ (4) Corks

Other Supplies:
- ☐ Box of test tubes
- ☐ Bucket with lid

Lead Box:
- ☐ (3) Extra student notebooks
- ☐ Lead instructions
- ☐ Chromatography picture packet
- ☐ Lead lab coat
- ☐ Time card
- ☐ (2) Pencils
- ☐ (2) Red pens
- ☐ (2) Wet erase markers
- ☐ Notepad
- ☐ (6) Rulers
- ☐ (2) Timers
- ☐ Water
- ☐ (3) Test tube stands
- ☐ (2) Droppers
- ☐ Requested strips of paper
- ☐ Requested pens
- ☐ Paper towel
- ☐ Timer
- ☐ Filled out materials page

☐ (12) Small cups (labeled with liquid types)
☐ Vinegar
☐ Soap
☐ Rubbing alcohol

☐ Bag 1: lead chromatography supplies ((4) 10 mL graduated cylinders, (10) corks, (8) droppers, (12) small cups (labeled with liquid types), paper towels)
☐ Bag 2: lead chromatography supplies (chromatography paper (minimum 30), 6 paper types (minimum 20 each), 8 different black pens, 5 sets of different colored markers)
SCIENTIFIC PRACTICES

Conclusions

Question: If we change the liquid height, what will happen to the paper height?

<table>
<thead>
<tr>
<th>Variables</th>
<th>Trial A</th>
<th>Trial B</th>
<th>Trial C</th>
<th>Trial D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Tube</td>
<td>Original</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>5 cm</td>
<td>10 cm</td>
<td>15 cm</td>
<td>20 cm</td>
</tr>
<tr>
<td>Liquid Type</td>
<td>Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid Amount</td>
<td>2 ml</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pen Color</td>
<td>Black</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Height</td>
<td>5 cm</td>
<td>10 cm</td>
<td>15 cm</td>
<td>20 cm</td>
</tr>
<tr>
<td>Obtained</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>5 cm</td>
<td>8 cm</td>
<td>9 cm</td>
<td>9 cm</td>
</tr>
<tr>
<td>Liquid Height</td>
<td>5 cm</td>
<td>10 cm</td>
<td>11 cm</td>
<td>11 cm</td>
</tr>
<tr>
<td>Other</td>
<td>blue orange red</td>
<td>blue orange red</td>
<td>blue orange red</td>
<td>blue orange red</td>
</tr>
</tbody>
</table>

Write a conclusion from the results above:

We can conclude that the paper height will change depending on the height of the liquid. If the paper is 11 cm or shorter, the liquid will reach the top of the paper if the paper is 11 cm or shorter. Because when the paper was 5 cm and 10 cm high, the liquid was 5 cm and 10 cm high, and when the paper was 15 cm and 20 cm high, the liquid was only 11 cm high.

RESULTS

Table

<table>
<thead>
<tr>
<th>Variables</th>
<th>Trial E</th>
<th>Trial F</th>
<th>Trial G</th>
<th>Trial H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Tube</td>
<td>Original</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>4.5 min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid Type</td>
<td>Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid Amount</td>
<td>2 ml</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pen Color</td>
<td>Original</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pen Color</td>
<td>purple, light green, orange, black</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Dot Height</td>
<td>1 cm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dark Placement</td>
<td>on</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predictions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>Trial E</td>
<td>Trial F</td>
<td>Trial G</td>
<td>Trial H</td>
</tr>
<tr>
<td></td>
<td>3.5 cm</td>
<td>5.5 cm</td>
<td>2.5 cm</td>
<td>4 cm</td>
</tr>
<tr>
<td>Initial Height</td>
<td>10 cm</td>
<td>15 cm</td>
<td>15 cm</td>
<td>20 cm</td>
</tr>
<tr>
<td>Measurements</td>
<td>blue, light green, orange, purple</td>
<td>orange, light green, blue, and yellow</td>
<td>white, the smear</td>
<td>orange, light green, purple, and pink</td>
</tr>
</tbody>
</table>

The independent variable(s) is (are) the changing variable(s) and the dependent variable(s) are smear height, liquid height, and other.

CONCLUSION

We can conclude that the pen color does not greatly affect the smear height but does affect the color of the smear.

(Example: the shorter the paper, the shorter the smear height.)

What else do you have to support your claim?

(Remember to include your measurements and/or observations.)

Can you test the first part (claim) of the conclusion?

YES [] **NO** [] If you checked this box go back and revise your claim so that it can be.)

The second part of the conclusion is data because it contains an observation.

I acted like a scientist when I observed the colors of the smears and measured the smear heights.
Set-Up:

SciTrek Lead:
If the classroom has a document camera, ask the teacher to use it for the conclusion example (page 18, student notebook). If the classroom does not have a document camera, then tape up the poster-size notebook pages on the front board.

SciTrek Volunteer:
Set out student notebooks.
- If students are not in the classroom before SciTrek starts, set out the notebooks where students should sit when they come into the classroom.
- If students are in the classroom before SciTrek starts, pass-out notebooks to them, they will move to their subgroup seats after the introduction.

Place the test tubes in the test tube rack and pour all of the liquids that your groups need into the small cups. Have all supplies ready so that you can set them out as soon as your groups are ready to start.

Introduction:
(20 minutes – Full Class – SciTrek Lead)

If needed have volunteers hand out the notebooks/nametags to students in their seats. They will move into their subgroups after the introduction.

Ask the class, “What is the class question that we have been investigating?” Students should tell you, “What variables affect smears?” Tell the students that today they are going to perform their second experiment. Once the experiment is complete, they will analyze their data and determine what conclusions can be drawn from their results. Tell students that their conclusions will help answer the class question. Ask the students for the definition of a conclusion. They should respond that it is a claim supported by data. Ask the students how many changing variables experiments can have in order to make claims/conclusions. They should respond that there can only be one changing variable. Ask them why they can only have one changing variable in order to draw a conclusion. They should say that if there is more than one changing variable they would not be able to tell which one of the multiple changing variables affects the smear.

To help learn how to analyze data, we will look at other scientists’ data to see if we can draw a conclusion from their results. Have students turn to page 18 of their notebook and place an example notebook under the document camera. Tell the students to look over the data in this results table. Ask the students what the changing variable was in the experiment. They should respond paper height. Have students circle paper height. Next, have students identify and underline the controls for the experiment. Students should underline test tube, time, liquid type, liquid amount, paper type, pen color, pen type, and initial dot height. Lastly, have students identify the data the scientists collected and box that information. Students should box smear height, liquid height, and other. Ask students what was the question that these scientists were exploring. They should respond: “If we change the paper height, what will happen to the liquid height?” Fill in the changing variable in the blank in the question above the results table. Ask students if a claim/conclusion can be made from this data. Students should realize that there is only one changing variable, so a claim/conclusion can be made from these results.

Next, draw a picture on the board of what happened in each trial. Ask the students what the paper height was for each trial. Draw papers in ascending order labeled A through D. Then ask the students where the dot was on each paper, and draw a line and dot proportionate to the paper sizes at what would be 2 cm. Next ask the students what the liquid height was for each of the trials. For trial A draw a line at 5 cm, for
trial B draw a line at 10 cm, for trial C draw a line at 11 cm, and for trial D draw a line at 11 cm. Finally, ask the students what the smear height for each of the trials is, as well as where on the paper the smear should be drawn. Ask the students why the smear height is shorter than the water height. Students should realize that the smear height starts at the line (2 cm from the bottom of the strip) and the water level starts at the bottom of the strip. For each trial, the smear should be drawn from the base of the dot to the top of the liquid height (see example drawing below). Ask students if they see any trends in the liquid heights. Students should say that the liquid heights for the 10 cm and 5 cm papers reached the top of the paper, but the liquid heights for the 15 cm and 20 cm papers were both 11 cm. Next, have students make several predictions about what would happen to the liquid and smear height if the paper height was several different sizes. For example: if the paper height was 8 cm, would the liquid reach the top of the paper? Yes. If the paper height was 13 cm, would the liquid reach the top of the paper? No. After making several predictions, ask the students what is the tallest paper height that would still allow the liquid to reach the top of the paper. This paper height will be 11 cm. After students have a clear idea of what happened in the experiment, tell them that we are going to determine an appropriate conclusion for this data.

Explain that when drawing a conclusion from data, the first step is making a claim to explain the results.

Then ask, “Can anyone look at the drawings and make a claim that tries to explain these results?” Example claims that state how the liquid height is affected by the paper height:
1. the liquid will reach the top of the paper if the paper is 11 cm or shorter
2. if the paper height is larger than 11 cm, the paper height will not affect liquid height.

Example claim that states what happened
1. the paper height affects the liquid height
If possible, try to lead the students to a claim that explains how the liquid height was affected instead of a claim that just states what happened to the liquid height. The underlined dotted claim above is the claim that most classes generate. Tell students that claims that allow you to make predictions are more valuable in science because we can then go out and further test our claims to see if they are correct. Therefore, when they try to generate a claim about their data, they should try to have a claim that would allow them to make a prediction. Write the claim in the example notebook and have students copy it into theirs.

Ask the students what data was collected to support this claim. Below are examples of data that backs up claims that stated how the liquid was affected. The underlined dotted data below goes with the underlined dotted claim above.
1. when the paper height was 5 cm and 10 cm the liquid level was 5 cm and 10 cm (same as the paper height) and when the paper height was 15 cm and 20 cm the liquid level was only 11 cm
2. when the paper height was 15 cm and 20 cm the liquid height was 11 cm

Ask students how they know that the statement generated was data. Students should say that the statement contains measurements, showing that scientists had to go and physically carry out an
experiment to discover the results. Write the data after the claim in the example notebook and have students copy it into their notebooks. Make sure students understand that the conclusion that they made is the outcome of their experiment and should answer the experimental question. In addition, these smaller experimental questions can be combined to help answer a larger question, such as the class question.

***Teacher Note: If the experimental question was asked about the smear height or the smear color, below are appropriate conclusions for those questions.

1. If the paper height is greater than 11 cm, the smear height will be 9 cm because when the paper height was 20 cm and 15 cm the smear height was 9 cm.
2. If the liquid level is the same as the paper height, then the smear height will be 2 cm shorter than the paper height because when the paper height was 10 cm and 5 cm the liquid level was the same as the paper height, the smear heights were 8 cm and 3 cm respectively, both were 2 cm shorter than the paper height.
3. The height of the paper affects the smear because when the paper height was 20 cm, the smear height was 9 cm and when the paper height was 10 cm, the smear height was 8 cm.
4. The colors that the black dot separates into are the same regardless of the paper height because the color of the smears were observed to be blue, orange, and red for all four trials.
5. The height of the paper does not affect the colors of the smear because the colors of the smears were observed to be blue, orange, and red for all four trials.

Today, students will run their second experiment, complete their graph, and draw a conclusion from their data. Remind students that they must have their procedure and results table completed before they can start their experiment. If needed, tell students to get together with their group and start working.
Results Table:
(5 minutes – Subgroups – SciTrek Volunteers)

If your group has not finished their procedure, make sure they do this before moving on to their results table.

Have students underline the variables that are controls, circle the variable that is the changing variable, and box the data collection. When writing the values, make sure that for controls, they only write the value of the control in trial E and then draw an arrow through the remaining trials; for the changing variable, they write the value in each of the boxes.

When students have finished, have them make predictions about the final height of the smear. Have them write a “T” in the box of the trial they think will produce the tallest smear and an “S” in the box of the trial they think will produce the shortest smear. They will leave two of the boxes empty. If they think all trials will be the same height, have them write “same” over all of the boxes. Try to question each group on their thought process behind their predicted heights. See example notebook above.

Experiment:
(20 minutes – Subgroups – SciTrek Volunteers)

When students are ready to start their experiment, give them their requested materials. If students are missing any of their experimental materials, the lead box has extra materials. Make sure that students label their strips E, F, G, and H (in pencil at the top of each strip) so they can tell them apart later. As soon as students are done with their liquids, remove the liquids, graduated cylinders, and droppers and put them in the bucket (please do not put trash in the bucket). It is important to do this as soon as possible so students do not play with or spill their liquids. When the experiment is finished, place all test tubes in the bucket and put the corks, test tube rack, timer, and pens in your group box. Once students have finished their experiments, they can record their findings. Make sure that groups trace the liquid line (with pencil) onto their strips so they can easily see/measure it later if needed. Once students have finished their measurements, make sure they place their strips in a safe place so that they can attached them to their notebook at the end of the day. These strips will be attached to their posters during the poster making session. If your group has things under control, help other subgroups. As soon as they finish their experiment, they can graph their results. An example of a properly filled out results table is shown below in the Graph section on the left.

Graph:
(5 minutes – Subgroups – SciTrek Volunteers)

Help students fill out their graph by having them go through and complete the checklist on page 20. Be sure that students label the y-axis with smear height (or liquid height if needed) and the x-axis with their changing variable. If students pick systems in which the dot did not smear, they can go back to page 15 and revise their question to, “What will happen to the height of the liquid?” from, “What will happen to the height of the smear?” Students will need to decide what scale to use on the y-axis. Students can use halves, ones, or twos. To make it easier to see patterns, students should arrange the trials in increasing measurements as done in the example below. In this example, the trials were graphed in the following order: G, F, E, H. Once they have graphed their values, make sure that they write the smear or liquid height on top of each column so that it is easy to discern the value.
Conclusion:
(8 minutes – Subgroups – SciTrek Volunteers)

Have students summarize their findings. Challenge students to think about how their changing variable did or did not affect the smear.

When writing their conclusion, make sure that students start the statement with a claim about the trend or pattern in their data and then write “because” and use data to back up the claim. The data in this experiment is usually in the form of measurements. If students are going to make a claim about the liquid height instead of the smear height, have them go back and revise their question on page 15.

If the values of their changing variable have an order (example: 1 min → 3 min → 5 min) then that variable affected the smear height. If, on the other hand, there was no order for their changing variable (example: 0.5 cm → 1 cm mL → 1.5 cm) and the difference between the smear heights for each trial is small, then that variable did not affect the smear height. If possible, try to have students generate a claim that allows them to make a prediction about something that they have not tested. Challenge students to think about how (claim 1 and 2 below) their changing variable did or did not affect their measurements instead of just what happened (claim 3 and 4 below). For this experiment, we will not focus on why the dot is spreading up the paper.

Example claims that state how the changing variable did or did not affect the smear.
- Claim 1: the more absorbent the paper the larger the smear
- Claim 2: the more time the taller the smear

Example claims that state what happened to the smear.
- Claim 3: the paper type affected the height of the smear
- Claim 4: the color of the pen did not affect the height of the smear
Once they have discussed their idea, have the students fill out the section labeled: “Generate a claim about how your changing variable affected your results” (page 21).

Conclusions are still valid, and important, if they show that the changing variable tested did not affect the smear. Even if their conclusion is contrary to what you think, have students make a claim based solely on their data.

If there is time, students can determine the data to support their claim. For an example of how to do this, see the conclusion section on day 6. Example student work for the conclusion section can be seen below.

CONCLUSION

Generate a claim about how your changing variable affected your results.

Example: the shorter the paper the shorter the smear height.

What data do you have to support your claim?

(Include your measurements and observations.)

The smear heights for the light green and purple pens were 3.3 cm, but we observed the smear for the light green pen contained light green, blue and yellow while the smear for the purple pen contained purple, blue, purple, and pink.

Can you test the first part of your conclusion?

☐ Yes ☐ No (If you checked this box go back and revise your claim so that it can be.)

The second part of the conclusion is data because it contains an observation.

I acted like a scientist when I observed the color of the smears and measured the smear heights.

Wrap-Up:

(2 minutes – Subgroups – SciTrek Lead)

Tell the students that during SciTrek’s next visit they will have time to finish their conclusions and then make a poster to share their results with the class. Show students how to attach their strips to the front of their notebooks so they will have them next time when they make their poster.

Clean-Up:

Before you leave, have students attach their nametags to their notebooks and place them in the group box. Have one student of each group attach their experiment strips to their notebook with their nametag. Make sure that all of the liquids and dishes are in the bucket and the bucket’s lid is securely fastened. Bring all materials back to UCSB. In addition, put your lab coat into your group box.
Day 6: Conclusion/Poster Making

Schedule:

- Introduction (SciTrek Lead) – 2 minutes
- Conclusion (SciTrek Volunteers) – 18 minutes
- Poster Making (SciTrek Volunteers) – 35 minutes
- Wrap-Up (SciTrek Lead) – 5 minutes

Materials:

- (3) Volunteer Boxes:
 - □ Student nametags
 - □ Poster diagram
 - □ (9) Paperclips
 - □ Student notebooks
 - □ (3) Stickers on how to present graph
 - □ Highlighter
 - □ Volunteer instructions
 - □ (2) Pencils
 - □ Scissors
 - □ Volunteer lab coat
 - □ Notepad
 - □ (2) Glues

- (3) Poster Parts Packs
 - □ Scientists’ names
 - □ Procedure
 - □ Conclusion
 - □ Question
 - □ Results table
 - □ (4) “I acted like a scientist when ______”
 - □ Experimental set-up
 - □ Results graph
 - □ (4) Picture spaces

- Other Supplies:
 - □ Poster paper tube

- Lead Box:
 - □ (3) Extra student notebooks
 - □ (3) Stickers on how to present graph
 - □ (2) Highlighters
 - □ Lead instructions
 - □ (2) Pencils
 - □ (2) Scissors
 - □ Chromatography picture packet
 - □ (2) Wet erase markers
 - □ Scotch tape
 - □ Lead lab coat
 - □ Notepad
 - □ Poster part packs (3 each color)
 - □ Time card
 - □ (9) Paperclips

Set-Up:

SciTrek Lead:

Ask the classroom teacher for a place to leave the student posters in the classroom.

SciTrek Volunteer:

Set out student notebooks.

- If students are not in the classroom before SciTrek starts, set out the notebooks where students should sit when they come into the classroom.
- If students are in the classroom before SciTrek starts, set out the notebooks where students should sit during the module, they will move to these spots after the introduction.

Have poster parts ready for students.
Introduction:

(2 minutes – Full Class – SciTrek Lead)

If needed, while you are doing the introduction have volunteers set out the notebooks/nametags where they would like students to sit. Make sure that students in the same subgroup are sitting next to each other. Tell students that a notebook will be put on their desk, which is not their notebook and they should not move it.

Ask the class, “What is the class question that we have been investigating?” Students should tell you, “What variables affect smears?” Inform the class that they will be making posters to present their findings to the class. Before they make posters, they will have to finish their conclusions. Ask the class how scientists define a conclusion (a claim supported by data). Ask the class what a claim is (the explanation of your results, a statement that can be tested) as well as what can be used for data (measurements or observations).

After they finish their conclusion, they will create a poster to present during the next SciTrek visit. This presentation will be their chance to tell the class what their group has discovered about the class question. Tell students that they should write as neatly as possible on the poster parts so that the other class members can read their poster. In addition, they will pick one of their two experiments to present. Remind them that they should pick an experiment from which they were able to draw a conclusion.
Conclusion:
(18 minutes – Subgroups – SciTrek Volunteers)

If students have not made a claim about their data, have them make one. For an example of how this is done, see the conclusion section in day 5. After students have determined their claim, have them determine the supporting data. Have students look at their results table/graph and write in words what measurements or observations were used to support their claim. In most cases, you can have students select the two data points that best support their claim. This is usually the largest and the smallest measurements.

Example data to support the four claims that were previously listed:

- Data 1: the smear on the paper towel (most absorbent) was 3 cm and the smear on the copy paper (least absorbent) was 0.5 cm
- Data 2: the strip that sat in the liquid for 1 minute had a 1 cm smear and the strip that sat in the liquid for 5 minutes had a 4 cm smear
- Data 3: the smear on the paper towel was 3 cm and the smear on the copy paper was 0.5 cm
- Data 4: all of the smears by the Mr. Sketch pens, regardless of color, were about 3 cm long

Once students have determined their conclusion, have them complete the two questions that follow. First, have them verify that the first part of their statement is testable, making it a claim. If it is not a claim, have them go back and revise the first part of the statement. Second, have students justify how they know the second part of the statement is data. (Statements that are data contain measurements or observations. If the statement is an observation, make sure the word “recorded” or “observed” is in the statement to indicate that the experiment was carried out.) If the data statement does not have a measurement or an observation, have students modify their statement.

Example student work for the conclusion section can be seen below.

Image:

CONCLUSION

1. Generate a claim about how your changing variable affected your results. (Example: The shorter the paper, the shorter the smear height.)

2. What data do you have to support your claim? (Remember to include your measurements and/or observations.)

3. Can you test the first part (claim) of the conclusion?
- Yes
- No

4. The second part of the conclusion is data because it contains an observation. I acted like a scientist when I observed the color of the smears and measured the smear heights.
Before starting their poster, have students fill in the sentence frame (page 21): “I acted like a scientist when______.” Each student’s response should be unique and specific. They should NOT write, “When I did an experiment,” because this is general and applies to all of the students in the class. If students are having trouble with this sentence frame, ask them what they did during each SciTrek visit.

Poster Making:
(35 minutes – Subgroups – SciTrek Volunteers)

Each subgroup (three/four students) will make one poster on one of their experiments from which they were able to draw a conclusion.

Pass-out the writing portions (general poster parts and “I acted like a scientist when______”) and have students write their names on them and complete them. In addition, have each student write their name on the scientists’ names part. Use the following guidelines when assigning poster parts:

<table>
<thead>
<tr>
<th>Number of Students in Subgroup</th>
<th>Poster Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Each student gets an “I acted like a scientist when____” and picture space.</td>
</tr>
<tr>
<td></td>
<td>1. Question and Experimental Set-Up</td>
</tr>
<tr>
<td></td>
<td>2. Procedure</td>
</tr>
<tr>
<td></td>
<td>3. Results Graph* and Conclusion</td>
</tr>
<tr>
<td></td>
<td>Student that finishes 1st completes the results table (not presented)</td>
</tr>
<tr>
<td>4</td>
<td>1. Question and Experimental Set-Up</td>
</tr>
<tr>
<td></td>
<td>2. Procedure</td>
</tr>
<tr>
<td></td>
<td>3. Results Graph*</td>
</tr>
<tr>
<td></td>
<td>4. Conclusion</td>
</tr>
<tr>
<td></td>
<td>Student that finishes 1st completes the results table (not presented)</td>
</tr>
</tbody>
</table>

*Give the results graph to the student that is most confident in presenting.

Once all writing sections are completed, have students draw a picture of their experiment or how they acted like a scientist.

In the students’ notebooks, highlight and number the section that they will present. The parts should be numbered as follows: 1) scientists’ names, 2) question, 3) experimental set-up, 4) procedure, 5) results graph, and 6) conclusion (see example below). Students will NOT present the results table or “I acted like a scientist when ______” from their poster. If a student is presenting multiple sections, use the paperclips in your group box to clip together the sections that they are reading so that when presenting, it will be easy to flip back and forth between pages.
Place the following sentence frame sticker on the bottom of the notebook page of the student that is completing the results graph (page 20).

The _______________________ for____________ was _____________________.

Then practice reading the four sentences with that student. For the poster below, the sentence would be: The smear height for rubbing alcohol was 4.5 cm. Make sure you fill in the first blank (ex: smear height) for the student in the sentence frame but leave the second two blanks (“changing variable value” and “measurement”) empty.

As soon as students have completed some of their pieces, start gluing them onto the large poster paper exactly as they are arranged in the example below. Do not wait until students have completed all the pieces to start gluing them onto the poster.

Once the poster is complete, have students start practicing for the presentation. Make sure that students read from their notebooks instead of off the poster.
Ask each of your groups a few questions about their poster. Have them use their findings to predict what would happen to the smear for other experiments that they did not perform but are related to their experiment. For instance, if the group’s conclusion was, “the thicker the liquid the smaller the smear because soap gave a 1 cm smear height and water gave a 6 cm smear height,” ask the group to predict the smear height if the liquid was honey. They should be able to predict that it would be less than 1 cm because honey is thicker than soap.

If there is additional time, tell each subgroup that the other students will ask them questions during their poster presentations. Tell them that they should think about what questions they will be asked and then think of the answers to those questions so that they will be prepared during their presentation.

Wrap-Up:
(5 minutes – Full Class – SciTrek Lead)

Ask the students the following questions:
 How did you act like a scientist during this project?
 What did you do that scientists do?

After having a discussion about how they acted like scientists and talking about how everyone does things that scientists do in their everyday lives, tell students that they will present their findings during the next SciTrek visit and that you are looking forward to hearing about all of their experiments.

Clean-Up:

Before you leave, have students attach their nametag to their notebook and place them in the group box. Leave student posters in the classroom. Bring all materials back to UCSB. In addition, put your lab coat into your group box.

Day 7: Poster Presentations

Schedule:

 Introduction (SciTrek Lead) – 2 minutes
 Practice Posters (SciTrek Volunteers) – 5 minutes
 Poster Presentations (SciTrek Volunteers/SciTrek Lead) – 51 minutes
 Wrap-Up (SciTrek Lead) – 2 minutes

Materials:

(3) Volunteer Boxes:
 □ Student nametags □ Volunteer lab coat □ (9) Paperclips
 □ Student notebooks □ (2) Pencils □ Highlighter
 □ Volunteer instructions
Lead Box:

- (3) Extra student notebooks
- Lead instructions
- Chromatography picture packet
- Lead lab coat
- Time card
- Teacher Evaluation
- (3) Stickers on how to present graph
- (2) Pencils
- (2) Wet erase markers
- (9) Paperclips
- (2) Highlighters
- Scotch tape

*Student posters should already be in the classroom.

Set-Up:

SciTrek Lead:

If the classroom has a document camera, ask the teacher to use it for the notes on presentations (pages 3 and 4, picture packet). If the classroom does not have a document camera, then write the class question on the board, “What variables affect smears?” Leave enough room to record student findings under the question.

Organize the posters so that groups that had the same changing variable present back to back.

Give the teacher the “Evaluation of the SciTrek Program by Participating Teachers” form. Ask teachers to fill this form out and give it back to you the next time you are there.

SciTrek Volunteer:

Set out the SciTrek notebooks/nametags. Today students will be sitting in their regular classroom seats during poster presentations.

Notebook Pages:

NOTES ON PRESENTATIONS

What variables affect smears?

<table>
<thead>
<tr>
<th>Changing Variable:</th>
<th>Time (min)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smear Height (cm):</td>
<td>0.5</td>
<td>5</td>
<td>7.5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Summary: A longer time results in a taller smear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Changing Variable:</th>
<th>Paper Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smear Height (cm):</td>
<td>0</td>
</tr>
<tr>
<td>Summary: More absorbent papers make taller smears</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Changing Variable:</th>
<th>Liquid Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smear Height (cm):</td>
<td>0.5</td>
</tr>
<tr>
<td>Summary: Thicker liquids result in shorter smears</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Changing Variable:</th>
<th>Liquid Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smear Height (cm):</td>
<td>1</td>
</tr>
<tr>
<td>Summary: Agrees with previous group</td>
<td></td>
</tr>
</tbody>
</table>
Introduction:
(2 minutes – Full Class – SciTrek Lead)

Tell students that today they will present their poster to the class. Inform students that this is a common practice in science. Scientists go to conferences where they present posters about the experiments they conducted. At these presentations, other scientists give them feedback on their experiments, which allows them to return to the lab with new ideas for future experiments.

Tell the students that they will have 5 minutes to practice presenting their poster with their group. Remind students to read from their notebooks when presenting. Tell students that after practicing, they will return to their normal classroom seats.

Practice Posters:
(5 minutes – Subgroups – SciTrek Volunteers)

If the posters are not already in order, the lead should organize the posters so the experiments featuring the same changing variable are presented back to back.

Have subgroups practice their poster presentation, making sure they are reading the poster parts in the correct order (scientists’ names, question, experimental set-up, procedure, results graph, and conclusion). Make sure each student’s part is highlighted in their notebook. If students are reading from multiple pages, use a paperclip to clip these pages together to make it easier for them to flip back and forth. Remind students to read from their notebook rather than from their poster.

Do not let poster practice go over 5 minutes.

Poster Presentations:
(51 minutes – Full Class – SciTrek Volunteers/SciTrek Lead)

Have students return to their original class seats. Ask the class, “What is the question that we have been working on solving?” Students should tell you, “What variables affect smears?” Tell students that during the presentations they are going to take notes. Have them turn to page 22 in their notebook while you turn to page 3 of the picture packet. Tell them that they need to record each group’s changing variable when the group says their question. In addition, they will record the values of the changing variable and the measurements when the group presents their graph.

After each presentation, students will be given the opportunity to ask scientific questions to the presenting group to help them determine if/how the variable investigated affected the smear. Tell them these questions are important because they will have to record a summary of what they learned from the group. Therefore, their questions should focus on helping them be able to summarize the group’s findings.

Student notebooks only have room for notes on 8 presentations. Therefore, they will not take notes on their own presentation.

Volunteers should make sure that students are quiet and respectful when other groups are presenting. When one of your groups is presenting, go to the front of the room with them; prompt students if they do not know who talks next and remind them to read from their notebooks.

During the student question time, the SciTrek lead and/or volunteers should ask at least one question. Examples of possible questions are: “How do you know...?” or “Is there anything else you can do to get
more information about your question?” Each group should answer approximately four questions (one question per student).

Below is an example of notes that the lead/students could have taken during the poster presentations.

After all poster presentations have been given, ask the class, “What did we learn about smears?” Have them summarize the class findings. The highlights from many experiments are shown below. Do not expect students to know highlights from experiments that were not run.

- The thinner the liquid, the taller the liquid/smear height.
- Different liquids will change the order the colors appear in the smear, but not what colors appear.
- The more absorbent the paper, the taller the liquid/smear height.
- If the liquid level is above the dot, the smear will travel downwards. If the liquid level is below the dot, the smear will travel upwards.
- Different black pens are made up of different dye colors.
- Colored markers separate into fewer colors than black markers.
- The longer the time, the taller the liquid/smear height.

When summarizing experiments, use students collected data and not what they should have found from the list above. Tell students you want to get the longest most colorful smear and that you need them to tell you what values of variables you should use.

- Time: As long as possible
- Liquid type: Water or another thin liquid
- Liquid Amount: Enough to get the liquid close to the dot without going over the dot
- Paper Type: The original paper or another absorbent paper
- Pen Color: Black
- Pen Type: Any washable marker
- Initial Dot Height: A value that would put the dot close to the liquid level
If no one in the class did experiments on one of the variables above, then they will not know how that variable affects smear height so do not expect them to tell you which value to use. Tell students they have taught you a lot about the smears.

Wrap-Up:
(2 minutes – Full Class – SciTrek Lead)

Tell the students that the volunteers that have been working with them are undergraduate and graduate students that volunteer their time so that they can do experiments. Have the students say thank you to the volunteers. This is the last day with their SciTrek volunteers, therefore, they should say goodbye to them. Tell students that you will be back one more time.

Tell students to remove the paper part of their nametag from the plastic holder and that they can keep the paper nametag but they need to give the plastic holder back to their SciTrek volunteer.

Clean-Up:

Before you leave, collect the plastic nametag holders and put them in the group box. Students can keep the paper part of their nametag. Collect notebooks and place them in the group box. Leave student posters in the classroom. Bring all materials back to UCSB. Remove tape from the lid of your group box and place inside. In addition, remove all materials from lab coat pockets, remove your nametag, unroll lab coat sleeves, and put your lab coat into the dirty clothes bag at UCSB.

Day 8: Conclusion Assessment/Tie to Standards/Content Assessment

Note: We highly recommend that you complete the conclusion assessment prior to Day 8 of the module.

Schedule:

Conclusion Assessment (SciTrek Lead) – 15 minutes
Tie to Standards (SciTrek Lead) – 35 minutes
Content Assessment (SciTrek Lead) – 10 minutes

Materials:

Lead Box:

☐ (3) Extra student notebooks
☐ Student notebooks
☐ Lead instructions
☐ Chromatography picture packet
☐ TTS Box
☐ Jar of sand and water
☐ (2) Markers
☐ (20) Googly eye and magnet mixture
☐ Lead lab coat
☐ (35) Content assessments
☐ (35) Conclusion assessments
☐ Time card
☐ (20) Pure substance bags labeled (sugar, salt, baking soda, and corn starch)
☐ (2) Pencils
☐ (2) Wet erase markers
☐ Matter Poster
☐ Physical Property Poster
☐ (20) Pure substance bags labeled with letters (A=baking soda, B= sugar, C= salt, and D= corn starch)
Notebook Pages and Charts:

TIE TO STANDARDS

1. Circle the value of the variable that the police should use to process the evidence from the suspect that would give them the tallest smear.
 - Time: 3 min, 5 min, 10 min
 - Liquid Type: Water, Scap, Syrup

Matter

Substances that occupy space and have mass

Mixture:
- Materials made of 2 or more substances
- Examples: Lucky Charms, Salt and Water
- Physical Properties: Mass, Color, Texture

Pure Substance:
- Material made of 1 substance
- Examples: Water, Salt, Oxygen

4. What type of physical property was used to separate the black ink?
 - Attraction to water and paper

5. What do we know about the yellow ink?
 - Attracted to paper

6. What do we know about the blue ink?
 - Attracted to water

7. Fill in the following words on the chart: physical properties, pure substance, matter, mixture.

8. Determine how you would separate each mixture into two parts.

<table>
<thead>
<tr>
<th>Mixture</th>
<th>Type of Physical Property</th>
<th>List 3 Physical Properties of each part of the mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>State of matter</td>
<td>Liquid, Solid, Brown, Light, Heavy</td>
</tr>
</tbody>
</table>

Is water a pure substance? Yes
Is sand a pure substance? No

Physical Property:

Property that can be measured or observed without changing the substance.

Examples of types of physical properties:
- Color
- State of matter
- Shape/size
- Texture
- Attraction to water
- Attraction to paper
- Material
- Mass
- Magnetism
Set-Up:

SciTrek Lead:

Collect the “Evaluation of the SciTrek Program by Participating Teachers” from the teacher. If they have not filled out the form, ask them to do it during the tie to standards activity.

If the classroom has a document camera, ask the teacher to use it for the tie to standards activity (pages 24-26, student notebook) and tie to standards pictures (pages 1, 5, and 6, picture packet). If the classroom does not have a document camera, then tape the example poster-size notebook pages to the front board.

Tape the matter and physical property charts to the board.

Pass-out notebooks to students. If you do not have time to get set-up before the start of the module, ask the teacher to pass-out notebooks during the conclusion assessment.

Remind the teacher to give you their lab coat at the end of the day.

Conclusion Assessment:
(15 minutes – Full Class – SciTrek Lead)

“Before we start our activity today we will determine how your ideas on conclusions are developing. One of the ways that we get program funding is by demonstrating the program effectiveness. Therefore, we need you to do your best on the assessment.” Pass-out the conclusion assessment and tell students to fill out their name, teacher’s name, and date on the top of the assessment. Remind the students that it is important that they fill out this assessment on their own.
For page 1, read the instructions to the students. Then read each of the statements and tell the students to circle if the statement is a claim, data, or opinion. As you are reading the statements walk around the room and verify that students have written their name on the top of the paper.

For page 2, have students circle the changing variable(s), underline the controls, and box information about data collection on the results table. Then, have them decide if the group could make a conclusion.

Read step one of the instructions to the students (identify the following statements as either CLAIM or DATA and write a C or D on the line). Then have students fill in if they think statement “a” is a claim or data by writing a C or D on the line. Tell students this is similar to page 1 of the assessment. Read step two of the instructions to the students (look at the results table and circle if the statement is a correct claim, correct data, or incorrect. Statements are INCORRECT if the statement does not agree with the results table or has not been tested). Point to the results table and have students circle what they think is the correct answer for statement “a.” Once they have completed statement “a” move on to the next statement. Read each statement aloud and tell students to write the appropriate letter on the line then circle if the statement is a correct claim, correct data, or incorrect.

Repeat the process for page 3. Read the question on the bottom of page 3 to students and have them fill in the blank.

For page 4, read the three attitudes towards science questions to students and have them answer them. When they are finished, collect the assessments and verify that the students’ names are on the top of the papers.

Pass-out the draw a scientist paper. Tell students to fill out their name, teacher’s name, and date on the top of the assessment. Give students exactly 4 minutes to draw a picture of a scientist. Then collect the papers from students’ verifying that their names are on the top of the papers.

Tie to Standards:
(35 minutes – Full Class – SciTrek Lead)

Mysterious Robbery (10 minutes)

Tell the students, “10 years ago a robbery happened that was never solved. The police have contacted us to help them solve the cold case. At the time of the crime a note, written in black pen, was passed to the teller which read “Give me all your money.” The teller handed over the money but kept the note. In the confusion that followed, the robber managed to get away. At the time there were eight suspects. Each of these suspects was found with a black pen on them (which the police still have). The only other evidence that the police have from the original crime was the note. No fingerprints were found on the note or at the scene of the crime. How could we figure out who wrote this note, using the skills and knowledge learned from your experiments?” If students are having trouble generating responses prompt them by asking what they did in their experiments and have students expand on these ideas. Allow students to discover that you can determine the identity of the thief by determining the unique properties of each pen. If you can find a link between the ink on the letter and the ink from one of the pens found on the suspects then you can identify the robber. Just like the experiments they did, they could take a sample of the ink from the letter and see what happens when it is put in a liquid. Then they can run the same procedure on each of the pens that were found. Comparing the letter ink to the suspects’ pens ink will allow them to determine the robber.

Ask students if it would be easier to identity of the robber’s pen from a shorter or taller smear? The students should realize, the taller the smear the more details they could learn about the dyes used in the pen. This would make it easier to tell the pens apart and identify the robber. Tell the students that the
police have suggested several values for different variables that could be used to run the experiment, but they need the students’ help in identifying the best values for the variables. Have students turn to page 24 of their notebooks and fill out the chart together.

Ask students which amount of time would allow the smear to be the tallest. Students should realize that the longer the time in the liquid, the taller the smear. Thus, the “best” choice for time will be 10 minutes. Circle 10 minutes in the example notebook and have students copy this into their own notebook. An example can be seen below.

Now ask students which liquid type would allow the smear to be the tallest. Students should realize that the thinner the liquid, the taller the smear because thick liquids do not travel as far up the paper as the thinner liquids. Student should have experienced this if they tried soap (thick liquid) in comparison to water, vinegar, or rubbing alcohol (thin liquids). Syrup is another thick liquid, therefore, students should be able to predict that it will not be a “good” liquid to choose. From the selections given, water would be the best choice for the tallest smear. Circle water in the example student notebook and have students copy this response into their own notebooks. An example can be seen below.

Now ask students how much liquid should be used to get the tallest smear. From their experiments students should have seen the lower the liquid level, the longer it takes for the liquid to reach the dot. This leaves less time for the dot to smear, resulting in a shorter smear height. However, if the liquid level is above the dot, and the dot is soluble in that liquid (smears in that liquid), the dot will start to dissolve into the liquid and will travel down into the liquid instead of up the paper. Therefore, the liquid level should be as close to the dot as possible without going over the dot. Circle this response in the example notebook and have students copy this response into their notebooks. An example can be seen below.

Once students have filled out the table, tell them that the police took their suggestions and ran their experiments. Show students the results of the experiment (page 5, picture packet).
Have students look at the data and come up with a conclusion. Because there are no measurements on the strips students will have to use observations for data. Therefore, make sure that they use the word observed in the data portion of the conclusion. Have students individually fill out the conclusions and then share them with the class. An example conclusion is shown below.

![Example conclusion](image)

Mixture Discussion (7 minutes)

Ask students, “What do you think these results imply about composition of the black ink?” Students should respond that black inks are composed of many different colored dyes making them mixtures. Have students fill in question 3.

![Example Mixture Discussion](image)

Make sure that the Matter and Physical Properties charts are taped to the board. Ask students if they know what matter is, if not give them the definition (matter is anything that occupies space and has mass). Point to a few objects around the room and ask them if they are matter. These will all be matter. Ask students if energy, ideas, and dreams are matter. Students should say no.
Ask students if the black ink is matter. Students should respond yes. Tell them that all mixtures are matter and review the definition of a mixture with student (materials made up of two or more substances). Give students the example of Lucky Charms and have them give you the parts of the mixture (marshmallows and cereal) and record these on the matter chart. Then have students generate at least one more mixture that can be distinguished by eye (example: trail mix – peanuts, raisins, M&Ms, etc.) and record that mixture and its parts on the matter chart.

Tell students that sometimes you cannot see the individual parts of a mixture, like the ink from the black pens or the air. However, both of these are still mixtures of multiple substances. Have students tell you the substances that make up air (oxygen, carbon dioxide, nitrogen, etc.). Now have students generate at least one example of mixtures they cannot see with their eyes (example: soda – water, sugar, dye, carbon dioxide, etc.) and record it and its parts on the matter chart.

Tell students that mixtures can be separated into pure substances. Pure substances are materials that are composed of only one substance, for instance water. Have students generate two other pure substances (example: sugar, oil, salt, nitrogen, iron, etc.) and record them on the matter chart.

Teacher Note: Pure substances contain two categories: elements and compounds (substances made up of two or more elements). Sometimes students state that water is not a pure substance because it is composed of hydrogen and oxygen. If this happens, tell students that in order to separate the hydrogen and oxygen in water you would have to break chemical bonds and this would change the water into something else. You can tell this because if you had hydrogen and oxygen and you mixed them together they would not form water without a chemical reaction occurring. For things to be a mixture you have to be able to mix the parts back together and get the mixture back. Compounds can be separated into their elements using chemical properties, but this changes the substance and makes it so that the original substance cannot be reformed unless a chemical reaction occurs. Do not go over this with students unless asked.

Tell students that mixtures and pure substances are related because all mixtures can be separated into their pure substances by taking advantage of differences in the physical properties of the substances that make up the mixture. Point to the physical property chart and go over the definition of a physical property (properties that can be measured or observed without changing the substance).

Physical Property:
Property that can be measured or observed without changing the substance.

Examples of types of physical properties:
- color
- shape/size
- texture
- attraction to water
- attraction to paper
- state of matter
- mass
- material
- magnetism

Ask students if you wanted to separate the Lucky Charms, what physical properties could you use? Student might generate the following: color, texture, shape/size. As students generate these, record them
on the physical properties chart. All of the blanks will not be filled in at this time, more physical properties will be added with the next two activities.

Ask the students if black ink is a mixture or a pure substance? (mixture) Ask students if we separated the ink into its parts? (yes) Ask students how we were able to separate out the different dye colors? By the end of the conversation make sure that students understand that in order for the dot to smear out into its different dye parts, the paper had to be put into a liquid. Ask students why some dye colors traveled up the paper farther than others? By the end of the conversation make sure that students understand that the dyes that traveled up the paper farthest were more attracted to the liquid than the paper and the dyes that moved very little were more attracted to the paper than the water. Tell students that the types of physical properties that were used to separate the black ink were the attraction to the paper and the attraction to the water. Record these in the types of physical properties section on the Physical Properties Chart.

Have student turn to page 25 of their notebook and have them fill in question 4. Show students page 1 of the picture packet, a strip from day 1 of the module and have students use it to answer questions 5 and 6.

As a review of what they just learned, have students put the following words into question 7: matter physical property, mixture, pure substance.

Separating Mixtures/Physical Properties (5 minutes)

Hold up the bottle of water and sand. Ask the students if the bottle contains a mixture or a pure substance and why. They should be able to see that the bottle contains two different substances, therefore, it is a mixture. Ask them what physical property they might use to separate the two substances. Students should notice that the water is a liquid and the sand is a solid. Write liquid under water and solid under sand on the chart for question 8. Ask students what the broad term is for solids, liquids, or gases. Students should say that these are all different states of matter. Write state of matter under type of physical property on the example notebook and have students copy it into their notebooks. In addition, add it to the physical property chart if needed.

Tell students that while substances have many different physical properties, some are more useful than others in separating mixtures. For instance, taking advantage of the state of matter would make it easy to
separate this mixture. However, if both of the substances were in the same state it might not be helpful. That being said, even if you cannot use a given physical property to separate the mixture, you can still use it to describe the substances. Get students to come up with two other types of physical properties and then list the specific physical properties of the sand and water. Challenge students to think of types of physical properties that are not already on the list. If new types of physical properties come up add them to the physical properties chart.

Have students determine if each component of the mixture is a pure substance. Students should understand that water is composed of only one material (water) so it is a pure substance. Circle yes. Students should also understand that sand can be made up of many different types of rock fragments (this can be seen by all the grains of sand being different colors), therefore, it would take additional work to separate the sand into its pure substances. Circle no.

Pass out one mixture bag to each pair of students. Tell students that they can open the mixture bag and take out the parts. What they have is a small sample of a mixture that needs to be separated. Tell them that they will get 2 minutes to fill out the chart for their mixture. They will need to record both the types of physical properties as well as the specific physical property for the components of the mixture.

After 2 minutes, have the class share out their types of physical properties and the specific physical property for each substance that they think they could be used to separate the mixture. If types of physical properties come up that are not on the physical property chart, add them to the chart. Then have students determine if each component of the mixture is a pure substance or not.

Pure Substances (12 minutes)

Tell students that in addition to using physical properties to separate mixtures, physical properties can be used to identify pure substances. Have student fill in question 9.

Pass out the labeled pure-substance bags; these four bags contain a single pure substance (sugar, salt, baking soda, or corn starch). Tell students they will be given a few minutes to identify physical properties of each of the pure substances which they should record in their notebooks. Tell them that they may touch and look at the bags, but they may not open any of the small bags. Once they have written down the physical properties, you will take away the labeled bags and give them four bags that are lettered A-D. They will then need to determine the identity of the pure substance based off their notes. Give students
~5 minutes to examine and write down the physical properties of the labeled substance, then remove the bags. Hand out the letter bags and have them determine what the unknown substances are:

- Bag A = Baking Soda
- Bag B = Sugar
- Bag C = Salt
- Bag D = Corn Starch

Once students have completed the activity, ask them to share their answer for each lettered bag. Also, ask them what physical property was most helpful in identifying the substance. Once a student has shared, poll the class using thumbs up/thumbs down for agree/disagree with the student. If a student disagrees, have them explain why and share what physical property they used to identify the substance. Collect the bags from the students.

Tell the students that they have taught you a lot about mixtures. You now know that black ink is a mixture and that you can use physical properties (such as the attraction of the ink to the paper) to separate the black ink into its parts. In addition, physical properties can also be used to describe pure substances.

Content Assessment:
(10 minutes – Full Class – SciTrek Lead):

Tell students to close their notebooks and to place them in the corner of their desk. Pass out the Content Assessment to the students. Tell students to put their name, teacher’s name, and date on the top of their paper. During the assessment, remind students to work by themselves. Read each of the content questions to the students and have them select/fill out the correct answer. When students are finished, collect the assessments and verify that they have written their name on the assessment.

Tell students that they can keep their SciTrek notebooks and that you have enjoyed working with and learning with them, and that you hope they continue to see themselves as scientists and explore the world around them.

Clean-Up:

Collect the teacher’s lab coat and bring all materials back to UCSB.
Extra Practice Solutions:

EXTRA PRACTICE:

Conclusions

Directions: On the results table, circle each changing variable, underline each control, and box information about data collection.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Trial A</th>
<th>Trial B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Liquid</td>
<td>Water</td>
<td>Soap</td>
</tr>
<tr>
<td>Type of Liquid</td>
<td>1 ml</td>
<td>1 ml</td>
</tr>
<tr>
<td>Piece of Liquid</td>
<td>1 g</td>
<td>1 g</td>
</tr>
<tr>
<td>Piece of Liquid</td>
<td>Red</td>
<td>Red</td>
</tr>
<tr>
<td>Piece of Liquid</td>
<td>Mr. Switch</td>
<td>Swatch</td>
</tr>
<tr>
<td>Final Observations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid Height</td>
<td>6 cm</td>
<td>5 cm</td>
</tr>
<tr>
<td>Liquid Height</td>
<td>5 cm</td>
<td>4 cm</td>
</tr>
<tr>
<td>Color</td>
<td>Blue</td>
<td>Red</td>
</tr>
</tbody>
</table>

Can this group make a claim/conclusion? Yes / No / I Don’t Know

Step 1: Statement (Type in) Step 2: Based on the table, is the statement correct?

1. The height of the liquid is and the height of the soup is .
 - Correct
 - Correct
 - Incorrect

2. The type of liquid does not affect the soup height.
 - Correct
 - Correct
 - Incorrect

3. With less liquid, the soup height results in a higher soup height.
 - Correct
 - Correct
 - Incorrect

4. The color of the soup affects the soup height.
 - Correct
 - Correct
 - Incorrect

5. The type of liquid does not affect the soup height.
 - Correct
 - Correct
 - Incorrect

What data can be used to support the correct claim(s)?

The thicker liquid (soup) had a 5 cm high soup, and the thinner liquid (water) had a 4 cm high soup.