Lead Information Packet
Module 1: Respiration
4th Grade

This document is not intended to give you all of the information you need to lead the module. You can find the complete instructions at http://www.chem.ucsb.edu/scitrek/module. This document is intended to be used as a reference during the module.

Important Things to Remember During the Module

1. You are responsible for keeping track of time in the classroom and making sure that ALL activities run smoothly. There will be a time card in the lead box with suggested times to start/stop each activity.
2. You are responsible for keeping volunteers and students on track.
3. Walk around during times volunteers are working with students and help struggling groups/subgroups.

Day 1: Procedure Assessment/Observations/Variables

Schedule: You are responsible for BOLD sections

- Introduction (SciTrek Lead) – 2 minutes
- Procedure Assessment (SciTrek Lead) – 10 minutes
- Observation Discussion (SciTrek Lead) – 4 minutes
- Observations (SciTrek Volunteers) – 14 minutes
- Variable Discussion (SciTrek Lead) – 8 minutes
- Variables (SciTrek Volunteers) – 19 minutes
- Wrap-Up (SciTrek Lead) – 3 minutes

Preparation:

1. If the classroom has a document camera, ask the teacher to use it for the initial bottle picture (page 1, picture packet) and class question (front cover, student notebook).
2. Make sure that volunteers are setting up for the initial observation. Details of how to do this are on a picture in the volunteer boxes.
OBSERVATIONS

Content: Something that is inside the bottle. Example: Aquatic Plant

Conditions: Things outside of the bottle that may have affected the color of the solution. Example: In the Dark

<table>
<thead>
<tr>
<th>Bottle 1</th>
<th>Bottle 2</th>
<th>Bottle 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents:</td>
<td>None</td>
<td>Aquatic Snail</td>
</tr>
<tr>
<td>Conditions:</td>
<td>24 hours under the light</td>
<td>24 hours under the light</td>
</tr>
<tr>
<td>Color of Solution at Start of Experiment:</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>Color of Solution at End of Experiment:</td>
<td>Blue</td>
<td>Yellow</td>
</tr>
</tbody>
</table>

Describe what happened to the solution over the course of 24 hours:

- **Bottle 1:** The bottle with nothing started at blue and after 24 hours stayed blue.
- **Bottle 2:** The bottle with a Snail started at blue and after 24 hours turned yellow.
- **Bottle 3:** The bottle with a plant started at blue and after 24 hours stayed blue.

VARIABLES

<table>
<thead>
<tr>
<th>Variable</th>
<th>How will changing this variable affect the color of the solution?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal type</td>
<td>All animals will turn the solution yellow.</td>
</tr>
<tr>
<td>Plant type</td>
<td>All plants will keep the solution blue.</td>
</tr>
<tr>
<td>Light amount</td>
<td>Solutions in the dark will be more blue than solutions in the light. Solutions in the light will be more yellow than solutions in the dark.</td>
</tr>
<tr>
<td>Bottle size</td>
<td>If the bottle is larger, the solution will be more blue. If the bottle is smaller, the solution will be more yellow.</td>
</tr>
<tr>
<td>Number of animals</td>
<td>Bottles with more animals will cause the solution to turn more yellow.</td>
</tr>
</tbody>
</table>
Introduction: (2 minutes – Full Class – SciTrek Lead)

- Introduce the module/SciTrek volunteers.

Procedure Assessment: (10 minutes – Full Class – SciTrek Lead)

- Pass out assessments.
- Read the question, changing variable (example: the changing variable was solid amount), and controls (example: the controls were liquid type, time, container type...). Do not read values of the changing variable or controls.
- Read each statement and have students underline controls/circle changing variables/box data collection, and then have students circle if the statement could be an appropriate procedure step.
- Collect assessments.

Observation Discussion: (4 minutes – Full Class – SciTrek Lead)

- Review the definition of an observation (a description using your five senses).
- Tell students that the term contents refers to what is inside the bottle besides the solution.
 - Have them identify the contents in one of the bottles.
- Tell students that the term conditions refers to the factors outside the bottle.
 - Have students identify the conditions of the bottles that have been in their room (24 hours full light).
- Have students move to their groups.
 - If a student does not have a nametag, identify the group with the least number of students in it and write the student’s name on one of the extra nametags that are in the lead box using that color of marker.

Observations: (14 minutes – Groups – SciTrek Volunteers)

- Put up the initial bottle picture (page 1, picture packet) on the document camera.
- Walk around and help groups that are struggling.
- Make sure that groups are moving along and only spending ~5 minutes on the table and ~9 minutes on describing what happened to the solution over the course of 24 hours.

Variable Discussion: (8 minutes – Full Class – SciTrek Lead)

- Have groups share what they did/learned.
 - After 24 hours the bottle with the aquatic snail turned yellow and the bottles with the aquatic plant and solution only stayed blue.
- Ask the students what the most interesting thing they observed was and have them decide as a class to investigate the questions: “What variables affect the color of the solution?”
 - Write the class question on the front cover of the class notebook and have students copy the question onto their notebook.
- Review the definition of a variable (something in an experiment that can be changed).
- Explore one possible changing variable with the class and have students share how this variable might affect the color of the solution.
Variables: (19 minutes – Groups – SciTrek Volunteers)

- Walk around and help groups that are struggling.
- Make sure volunteers are having their group come up with four possible variables as well as how these variables might affect the color of the solution.
- Make sure students are generating at least one additional variable by themselves.

Wrap-Up: (3 minutes – Full Class – SciTrek Lead)

- Have each group share one variable with the class and how they think it will affect the color of the solution.

Day 2: Question/Materials Page/Experimental Set-Up/Procedure Activity

Schedule: You are responsible for BOLD sections

Introduction (SciTrek Lead) – 10 minutes
Question (SciTrek Volunteers) – 5 minutes
Materials Page (SciTrek Volunteers) – 5 minutes
Experimental Set-Up (SciTrek Volunteers) – 5 minutes
Procedure Activity (SciTrek Lead) – 33 minutes
Wrap-Up (SciTrek Lead) – 2 minutes

Preparation:

1. If the classroom has a document camera, ask the teacher to use it for the day 1 final bottle picture (page 2, picture packet), question (page 4, student notebook), lead materials page (page 3, picture packet), experimental plants pictures (page 4, picture packet), experimental set-up (page 5, student notebook), and procedure activity (pages 7-9, student notebook).
2. Have volunteers set out notebooks so that students within the same subgroup can work together.
 a. If students are not in the classroom before SciTrek starts, have volunteers set out the notebooks where students should sit when they come into the classroom.
 b. If students are in the classroom before SciTrek starts, have volunteers set out the notebooks where they want students to sit and students will move to these spots after the introduction.
Experimental Considerations:
1. You will only have access to the materials on the materials page.
2. The liquid must remain the original liquid solution.
3. You cannot design an experiment that you know will kill or hurt an animal.
4. Only one animal per bottle.
5. You will only get four bottles (containing a small solution) per experiment.

Changing Variable (Independent Variable): Animal type.

Discuss with your group how you think your changing variable will affect the color of the solution.

QUESTION

Question our group will investigate:

- If we change the animal type what will happen to the color of the solution (hint: what you are measuring is the dependent variable)?

EXPERIMENTAL SET-UP

Determine the values of your changing variable (ex: animal type) from the materials page and write the values (ex: fish) for your four trials under each bottle.

Changing Variable:
- Animal type: fish, frog, shrimp, snail

Controls (variables you will hold constant):
Determine the variables that you will hold constant and indicate the specific value you will use in all your trials.

Solution Type / Original: light amount levels (Full)
- plant type / no plant: time / 24 hours
- bottle size / small: cap placement on

MATERIALS PAGE

You will only have access to the following materials:

1. Go through the resources page, changing variables, and write the name of your variable. Example: Control
2. For variables that are controlled select check boxes.
3. For variables that are changing variables, select one value and write special letter (A, B, C, D) next to each value. Example: Plant 1, A

Bottle Size:
- You may only have 4 bottles per bottle name. The number of bottles you would like next to each bottle size. All numbers should add up to four.

<table>
<thead>
<tr>
<th>Bottle Size</th>
<th>Number of Bottles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>4</td>
</tr>
<tr>
<td>Medium (Max 1)</td>
<td></td>
</tr>
<tr>
<td>Large (Max 1)</td>
<td></td>
</tr>
<tr>
<td>X-Large (Max 1)</td>
<td></td>
</tr>
</tbody>
</table>

Plant Type:
- You may only have 4 plants per plant name. The number of plants you would like next to each plant type.

<table>
<thead>
<tr>
<th>Aquatic Plants</th>
<th>Number of Plants</th>
<th>Non-Aquatic Plants</th>
<th>Number of Plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant 1 (original)</td>
<td></td>
<td>Flower 1 (Max 1)</td>
<td></td>
</tr>
<tr>
<td>Plant 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant 4 (Max 1)</td>
<td></td>
<td>Flower 2 (Max 1)</td>
<td></td>
</tr>
</tbody>
</table>

Light Amount:
- Mark the boxes of the light amount(s) you will use.

- X: Level 5 (Full Light)
- ☐ Level 4
- ☐ Level 3
- ☐ Level 2
- ☐ Level 1
- ☐ Level 0 (No Light)

Animal Type:
- You may only have 4 animals.

<table>
<thead>
<tr>
<th>Animal Type</th>
<th>Number of Animals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrimp</td>
<td>A</td>
</tr>
<tr>
<td>Fish</td>
<td>B</td>
</tr>
<tr>
<td>Snail</td>
<td></td>
</tr>
</tbody>
</table>

SCIENTIFIC PRACTICES

Procedures

Directions: Fill in the missing definition.

- Procedure: a set of steps to conduct an experiment.

A complete procedure MUST have:
- All values of the controls and the changing variable.
- What data will be collected (measurement/observations).
- The steps listed in the order that they will be completed.

A complete procedure MUST NEVER have:
- Extra or irrelevant information.
- Opinions about the experiment.
- Incorrect values of controls or the changing variable.

SciTrek Member Approval
Introduction: (10 minutes – Full Class – SciTrek Lead)

- If needed have SciTrek volunteers set out notebooks so students are sitting next to members of their subgroup.
- Put the day 1 final bottle picture (page 2, picture packet) under the document camera.
- Review the class question and what they learned last SciTrek visit.
- Review the following terms: contents and conditions.
- Review experimental considerations with the class (top of page 4 student notebook):
 - You will only have access to the materials on the materials page.
 - The liquid must remain the original blue solution.
 - You cannot design an experiment that you know will kill/hurt and animal.
 - Only one animal per bottle.
 - You will only get four bottles (containing original solution) per experiment.
- Design an example experiment with the class.
 - For the changing variable pick animal type. (page 4, student notebook)
 - Show students how to write the question.
 - If we change the animal type what will happen to the color of the solution?
 - Fill out the materials page for the example experiment. (page 3, picture packet)
 - First: underline controls and circle changing variables on the materials page.
 - Second: select values for the controls and changing variable.
 - Try to convince students to pick the following two controls plant type/no plants (easier to see what animals do to the solution if no plant is present) and light amount/level 5 (if any other light level is chosen, bottles will be in boxes and students will not be able to see the animals).
 - Write trial letters next to the changing variable values.
 - When talking about plants show students the plants that they will have access to. (page 4, picture packet)
Fill out the experimental set-up for the example experiment. (page 5, student notebook)

- If you have no plants, the control will be plant type and the value will be no plants. You must do it in this format so that it will fit into the procedure. The format would be similar if you had no animals.
- There will be two additional blanks for controls. Lead students to come up with the following.
 - Time/24 hours
 - Cap placement/on

Tell students that since the class is changing animal type, no other group will be able to have animal type as a changing variable and the only animals they will be able to access are snails.

- If needed have students move to their notebooks.

Question: (5 minutes – Subgroups – SciTrek Volunteers)

- Walk around and help subgroups that are struggling.
- Try to encourage subgroups to pick different changing variables.
- Make sure for the second part of the question (what you are measuring/observing) that students are specific (example: they should write “the color of the solution,” not just “the solution”).

Materials Page: (5 minutes – Subgroups – SciTrek Volunteers)

- Walk around and help subgroups that are struggling.
- Make sure subgroups are underlining their controls and circling their changing variable.
- Make sure subgroups do not exceed any limits set on the materials page.
- Make sure subgroups fill out the materials page correctly and completely.

Experimental Set-Up: (5 minutes – Subgroups – SciTrek Volunteers)

- Walk around and help subgroups that are struggling.
- Make sure that within one subgroup all students have the same order for their changing variable values.
- Make sure all control blanks are filled out.

Procedure Activity: (33 minutes – Full Class – SciTrek Lead)

- Review the definition of a procedure (a set of steps to conduct an experiment). (page 7, student notebook)
- Go over what procedures should include:
 - All values of the controls and the changing variable (independent variable).
 - What data will be collected (dependent variable).
 - The steps listed in the order that they will be completed.
- Go over what procedures should not include:
 - Extra or irrelevant information.
 - Opinions about the experiment.
 - Incorrect values of controls or the changing variable.
- Tell students that we will underline controls (underline the word control), circle changing variables (circle the words changing variable), and box information about data collection (box the word data).
- Tell students that they were given a scientist’s question and experimental set-up and they will need to determine if statements could be possible procedure steps. (page 8, student notebook)
- Read the question.
 - Have students circle **ball temperature** and box **height the ball bounces**.
• Read the changing variable and control values.
• Read each statement.
• Questions used for each statement:
 o What should be underlined, circled, and/or boxed?
 ▪ Have students underline controls/circle changing variables/box data collection.
 o Are there any opinions, incorrect, or extra/irrelevant information in this statement?
 ▪ If yes
 • Could this be a correct procedural step?
 ▪ If no
 • What is this step about?
 • Is there any other information that should have been included in this step?
 • Could this be a correct procedural step?
• **Letter a:** Get four 623 g rubber balls with circumference of 88 cm.
 o Correct – Step with Controls Only
• **Letter b:** Heat rubber balls to a temperature of [A] 30°, [B] 40°C, [C] 50°C, [D] 60°C
 o Correct – Changing Variable with Values
• **Letter c:** Measure and observe.
 o Incorrect – Vague Data Collection
• **Letter d:** Heat ball C to 50°C.
 o Correct – One Changing Variable Value Explained
• **Letter e:** Heat rubber balls to different ball temperatures.
 o Incorrect – Changing Variable with No Values
• **Letter f:** Measure how high each ball bounces on the cement.
 o Correct – Measurement
• **Letter g:** Drop the boring ball from a height of 3 m.
 o Incorrect – Opinion during Experiment
• Have students open their notebook to page 9.
 o A copy of the experimental set-up from page 8 is in the picture packet on page 5 which can be put under the document camera if needed.
• Read through the procedure and have students underline controls/circle changing variables/box data collection.
• Have students tell you what should and should not be in a procedure and correct the procedure accordingly.
• In order for students to have time to write procedures on day 3, page 9 MUST be completed before the end of the day.

Wrap-Up: (2 minutes – Full Class – SciTrek Lead)

• Tell students what they will do next time.
Day 3: Procedure Activity/Procedure/Results Table

Schedule: You are responsible for **BOLD** sections

- Introduction (SciTrek Lead) – 3 minutes
- Procedure Activity (SciTrek Lead) – 15 minutes
- Procedure Discussion/Procedure (SciTrek Lead/SciTrek Volunteers) – 35 minutes
- Results Table (SciTrek Volunteers) – 5 minutes
- Wrap-Up (SciTrek Lead) – 2 minutes

Preparation:

1. If the classroom has a document camera, ask the teacher to use it for the procedure activity (page 10, student notebook), procedure (page 6, student notebook), results table (page 11, student notebook), and experimental plants pictures (page 4, picture packet).
2. Verify when supplies will be dropped off for day 3.5.
3. Set-up the light level boxes (level 0-4) in ascending order with the light turned on sitting on top of the boxes with the front lids removed (see picture below). Set-up two additional lamps for level 5 lighting (this will not be in a box). Do not plug in extension cords into other extension cords.
4. Make sure that you leave the classroom teacher the class notebook, students’ notebooks, respiration picture pack, day 3.5 instructions, light boxes, lights, and bottles.
5. Have volunteers set out notebooks.
 a. If students are not in the classroom before SciTrek starts, have volunteers set out the notebooks where students should sit when they come into the classroom.
 b. If students are in the classroom before SciTrek starts, have volunteers set out the notebooks where they want students to sit and students will move to these spots after the introduction.
SCIENTIFIC PRACTICES

Procedures

Read the following procedure and underline constants, circle changing variables, and list information about interactions and then answer the questions.

PROCEDURE

1. Pour 100 mL of water into three bowls.
2. Freeze water at a temperature of 0℃.
3. Sprinkle 30 g of solid (A) sugar, (B) salt, (C) baking soda on top.
4. Observe the order the ice melts in.

PROCEDURE

Procedure Note:

Make sure to include all values of non-changing variables in the procedure. (Example: for a group that decided to change solution type any way they would get 4 small bottles with solution type A: original, B: red solution, C: yellow solution, D: orange solution and later menu.)

1. Get 4 small bottles with original solution.
2. Put (A) fish, (B) frog, (C) shrimp, (D) snail and no plants in bottles and put cap on.
4. Wait for 24 hours.
5. Observe and record the color of the solution.

In your procedures underline constants, circle changing variables, and list information about interactions.

RESULTS

Table

Fill out the chart for each of your trials. If one of the variables remains constant for all trials write the value in Trial A and then draw line through each box indicating that this variable is a constant.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Trial A</th>
<th>Trial B</th>
<th>Trial C</th>
<th>Trial D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution Type</td>
<td>Original</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>24 hours</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottle Size</td>
<td>small</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal Type</td>
<td>fish</td>
<td>frog</td>
<td>shrimp</td>
<td>snail</td>
</tr>
<tr>
<td>Plant Type</td>
<td>no plants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light Amount</td>
<td>level 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cap Placement</td>
<td>on</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solution Color</td>
<td>blue</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Predictions

<table>
<thead>
<tr>
<th>Predicted Final color of Bottle: clockwise</th>
<th>Trial A</th>
<th>Trial B</th>
<th>Trial C</th>
<th>Trial D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>Trial A</td>
<td>Trial B</td>
<td>Trial C</td>
<td>Trial D</td>
</tr>
<tr>
<td>Final Observations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram](image-url)
Introduction: (3 minutes – Full Class – SciTrek Lead)

- If needed have SciTrek volunteers set out notebooks.
- Review the class question.
- Review the definition of a procedure (list of steps to complete an experiment).
- Review what should and should not be in a procedure.
- If needed have students move to their notebooks.

Procedure Activity: (15 minutes – Full Class – SciTrek Lead)

- Tell students that we are going to look at a procedure and determine the changing variable, controls, and data collection. (page 10, student notebook)
- Read the first step of the procedure have students identify if anything should be underlined circled or boxed.
- Repeat the process for each procedural step.

Procedure Discussion/Procedure: (35 minutes – Full Class/Subgroups – SciTrek Lead/SciTrek Volunteers)

- Remind students that we had already decided on an experimental set-up for the example question of “If we change the animal type what will happen to the color of the solution?”
- Show students one of the bottles and explain that the bottles will come with solution in them.
- Have students determine one step for the class experiment and write it in the class notebook, remembering to underline controls/circle changing variables/box information about data collection. Once each step is done, allow students to write that step for their experiment in their notebook.
 - Step 1: Information about getting bottles.
 - After determining step 1 for the class experiment show students the step at the top of the procedure page (page 6, student notebook) and tell them that this step shows them how they will incorporate their changing variable into the procedure.
 - Step 2: Information about putting animals and plants in bottles then capping them.
 - Step 3: Information about the light amount bottles will be under.
 - Step 4: Information about how long bottles should sit.
 - Step 5: Information about data collection.
- Make sure volunteers are helping subgroups with a changing variable in the step before helping subgroups with only controls in the step.
- Show students how to fill out the results table. (page 11, student notebook)

Results Table: (5 minutes – Subgroups – SciTrek Volunteers)

- Walk around and help subgroups that are struggling.
- Make sure they are underlining their controls, circling their changing variables, and boxing their data collection.
- Make sure that control values are written in trial A with an arrow through the rest of the trials and that a value of the changing variable is written in each trial’s box.

Wrap-Up: (2 minutes – Full Class – SciTrek Lead)

- Tell students what they will do next time.
Day 3.5: Experiment

Preparation:

1. If light boxes are not set up see day 3 for instruction on how to set them up
2. Set out the bottles of solution in an area easy for students to access.
3. Have the plant and animal Tupperware’s ready to pass plants and animals out to students.
4. Pass out notebooks.

Experiment: (15 minutes – Full Class – Classroom Teacher)

- Have students read step of the class procedure (get 4 small bottles with original solution).
- Show students where the bottles and have them get the correctly labeled bottles.
- Get the bottles for the example experiment.
- Have students read step 2 of the class procedure (put animals in bottle A) Fish B) Frog, C) Shrimp D) snail with no plants.)
- Put the correct contents in the lead bottle.
- Have students look at their procedure and determine what they need in their bottles.
- Tell students to form a single line if they need aquatic plant 1, only one person per bottle should get in line.
 - If they need aquatic plant 1 in all bottles, all members of the group will have to bring up one bottle each.
 - As students take a plant trade their lid for a lid with holes.
- Give each student in line one aquatic plant 1.
- Repeat this process for aquatic plant 2, aquatic plant 3, aquatic plant 4, tree leaf 1, tree leaf 2, flower 1, flower 2, and snail.
- Have students read step 3 of the class procedure (place the bottle under level 5 (full) light.
- Show students where the bottles go by putting the example experiment bottles under the correct light amount.
- Have students that need to put their bottle under level 5 come up and put their bottles under level 5 light.
- Repeat the process for the other light amounts (levels 4,3,2,1 and 0).
- Have students read steps 4 and 5 (wait 24 hours, observe and record the color of the solution)
- Tell students that the SciTrek volunteers will be back tomorrow to help them do this.
- Collect SciTrek notebooks.

Day 4: Experiment/Results Summary/Poster Making

Schedule: You are responsible for BOLD sections

Introduction (SciTrek Lead) – 7 minutes
Experiment (SciTrek Volunteers) – 5 minutes
Results Summary (SciTrek Volunteers) – 10 minutes
Poster Making (SciTrek Volunteers) – 33 minutes
Wrap-Up (SciTrek Lead) – 5 minutes

Preparation:

1. If the classroom has a document camera, ask the teacher to use it for the results table (student notebook, page 11) and the results summary (page 12, student notebook).
2. Place group bottles together so that each group can easily get all of their bottles when they start their experiment.
3. Ask the classroom teacher for a place to leave the student posters.
4. Have volunteers set out notebooks.
 a. If students are not in the classroom before SciTrek starts, have volunteers set out the notebooks where students should sit when they come into the classroom.
 b. If students are in the classroom before SciTrek starts, have volunteers set out the notebooks where they want students to sit and students will move to these spots after the introduction.

Notebook Page, Poster, and Highlighted/Numbered Notebook:

A larger version of poster is in your group box.
Introduction: (7 minutes – Full Class – SciTrek Lead)

- If needed have SciTrek volunteers set out notebooks.
- Review the class question.
- Review the example experimental question.
- Tell students that today they are going to record the data from their experiment and then generate a results summary.
- Before they record their data, as a class they will record the data from the example experiment and come up with a results summary it.
- Show the students the four bottles from the example experiment and record the color of the solutions as well as any additional observations.
- Have students generate a results summary from the data. (page 12, student notebook)
 - My experiment shows that when an animal is present the solution turns yellow regardless of the animal type because we observed that the fish, shrimp, frog, and snail turned the solution yellow.
 - Remind students that their data statement must contain the words “observed.”
- Tell the students once they finish their results summary they will make a poster.
- If needed have students move to their notebooks.

Experiment: (5 minutes – Subgroups – Classroom Teacher)

- Help subgroups get their experiment bottles.
- Walk around and help subgroups that are struggling.
- Make sure that all students within the same group are recording the same color for each bottle.

Results Summary: (10 minutes – Subgroups – SciTrek Volunteers)

- Walk around and help subgroups that are struggling.
- Make sure that subgroups are generating a claim (ideally the claim will allow them to make a prediction about future experiments) and using data to back it up.
 - The data statement must include “we observed.”
 - Do not reference bottle letters in the results summary.
- Volunteers struggle with results summaries, so try to check at least one results summary from each group.
- Have students fill out the sentence frame on page 12, “I acted like a scientist when______”

Poster Making: (33 minutes – Subgroups – SciTrek Volunteers)
• Help volunteers glue poster pieces onto the poster. When gluing, make sure that the volunteers are gluing the poster in the exact order that is shown on the diagram and that the poster has a landscape orientation.

• Make sure that the student in each subgroup who is presenting the results table has a sentence frame sticker in their notebook and the volunteer has gone over how to present the four sentences with the student several times.

• Each student should have the part(s) that they are presenting highlighted and numbered in their notebook. (1) scientists’ names, 2) question, 3) experimental set-up, 4) procedure, 5) results table, and 6) results summary.) (see pictures above)

Wrap-Up: (5 minutes – Full Class – SciTrek Lead)

• Ask students the following questions:
 o How did you act like a scientist during this project?
 o What did you do that scientists do?

Day 5: Poster Presentations

Schedule: You are responsible for BOLD sections

Introduction (SciTrek Lead) – 2 minutes
Practice Posters (SciTrek Volunteers) – 10 minutes
Poster Presentations (SciTrek Volunteers/SciTrek Lead) – 46 minutes
Wrap-Up (SciTrek Lead) – 2 minutes

Preparation:

1. If the classroom has a document camera, ask the teacher to use it for the notes on presentations (pages 6 and 7, picture packet). If there is no document camera write the class question on the board.

2. Organize posters so that experiments featuring the same changing variable will be presented back to back.

3. Have volunteers pass out notebooks.
Introduction: (2 minutes – Full Class – SciTrek Lead)

- If needed have SciTrek volunteers pass out notebooks.
- Tell students that they will have 10 minutes to discuss their experiment and practice their posters.
- **DO NOT GIVE STUDENTS MORE THAN 10 MINUTES OR YOU WILL RUN OUT OF TIME FOR POSTERS.**

Practice Posters: (10 minutes – Subgroups – SciTrek Volunteers)

- Organize posters so that experiments about the same changing variable are presented back to back.
- Make sure students are reading from their notebook and practicing the poster in the following order: 1) scientists’ names, 2) question, 3) experimental set-up, 4) procedure, 5) results table, and 6) results summary. They will NOT read the “I acted like a scientist when _______” from their poster.

Poster Presentations: (46 minutes – Full Class – SciTrek Volunteers/SciTrek Lead)

- Tell students that if they ask a scientific question (a question that helps summarize what the group did/learned) they will receive a SciTrek pencil after the presentations are done.
- Have students present their posters.
- While posters are being presented, record each group’s changing variable values and data on pages 6 and 7 of the picture packet.
 - When a group reads their question, record the changing variable.
 - Stop the presentation after the question and have the class identify the changing variable.
 - When a group reads their experimental set-up, record the values of the changing variable.
 - When a group reads their results table, record the solution colors.
After each presentation ask students:
 o What questions do you have for this group?
 o Can someone summarize what we learned from this group?
• Record what they learned under the summary on pages 6 and 7 of the picture packet.
• After all presentations are over, have students tell you the variable values that they would select to make
 the solution the most yellow.

Wrap-Up: (2 minutes – Full Class – SciTrek Lead)
• Tell the students that the volunteers that have been working with them are undergraduate and graduate
 students that volunteer their time so that they can do experiments. Have the students say thank you to
 the volunteers. This is the last day with their SciTrek volunteers, therefore, they should say goodbye to
 them.
• Have volunteers give students SciTrek pencils.
• Tell students to remove the paper part of their nametag from the plastic holder and that they can keep
 the paper nametag but need to give the plastic holder back to their SciTrek volunteer.

Day 6: Procedure Assessment/Tie to Standards

Schedule: You are responsible for BOLD sections

Procedure Assessment (SciTrek Lead) – 10 minutes
Tie to Standards (SciTrek Lead) – 50 minutes

Preparation:
1. If the classroom has a document camera, ask the teacher to use it for the tie to standards activity (pages
 12-15, student notebook).
2. Have the bottles in the cardboard box available to show students the bottles during the tie to standards
 activity.
3. Pass out the procedure assessments and notebooks.
4. Remind the teacher to give you their lab coat at the end of the day.
RESULTS
Summary

My experiment shows: when a plant is in the dark, it causes the solution to turn yellow because the solution in level 0 (no light) turned yellow and the solution in level 5 (full light) stayed blue.

I acted like a scientist when I placed the plant inside of the bottle and put it under the correct light.

TIE TO STANDARDS

1. Fill out the following table. First predict the color of the bottle based on the following contents/conditions. After each bottle is shown then record the actual bottle color. (y=yellow, g=green, b=blue)

<table>
<thead>
<tr>
<th>Experiment Number</th>
<th>Bottle Contents</th>
<th>Bottle Conditions</th>
<th>Predicted Color</th>
<th>Actual Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Soil</td>
<td>24 Hours Light</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>2</td>
<td>Frog</td>
<td>24 Hours Dark</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>3</td>
<td>Fish</td>
<td>24 Hours Light</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>4</td>
<td>Aquatic Plant 1</td>
<td>24 Hours Light</td>
<td>y</td>
<td>b</td>
</tr>
<tr>
<td>5</td>
<td>Aquatic Plant 2</td>
<td>24 Hours Light</td>
<td>y</td>
<td>b</td>
</tr>
</tbody>
</table>

2. From the chart above, what do the yellow/green bottles have in common? The yellow/green bottles all have animals in them.

THE WIDER PICTURE

1. Use the graph below to answer the following questions about carbon dioxide.

Carbon Dioxide Levels in the Atmosphere

<table>
<thead>
<tr>
<th>Year</th>
<th>CO₂ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800</td>
<td>270 ppm</td>
</tr>
<tr>
<td>1900</td>
<td>290 ppm</td>
</tr>
<tr>
<td>2000</td>
<td>310 ppm</td>
</tr>
<tr>
<td>2100</td>
<td>330 ppm</td>
</tr>
<tr>
<td>2200</td>
<td>350 ppm</td>
</tr>
<tr>
<td>2300</td>
<td>370 ppm</td>
</tr>
<tr>
<td>2400</td>
<td>390 ppm</td>
</tr>
<tr>
<td>2500</td>
<td>410 ppm</td>
</tr>
<tr>
<td>2600</td>
<td>430 ppm</td>
</tr>
<tr>
<td>2700</td>
<td>450 ppm</td>
</tr>
<tr>
<td>2800</td>
<td>470 ppm</td>
</tr>
<tr>
<td>2900</td>
<td>490 ppm</td>
</tr>
<tr>
<td>3000</td>
<td>510 ppm</td>
</tr>
</tbody>
</table>

a. What information is plotted on the x-axis? Year
b. What information is plotted on the y-axis? CO₂ (ppm)
c. Does the level of carbon dioxide change over time? Yes □ No □
d. Circle the area(s) on the graph that do not fit the general trend, or that show the greatest change.
e. Summarize what the graph tells us about the carbon dioxide levels in the atmosphere. Carbon dioxide levels in the atmosphere are increasing because in 1600 there was 270 ppm of CO₂ and in 2000 there was 470 ppm of CO₂.

9. What are 3 things that could contribute to the increasing amounts of carbon dioxide in the atmosphere?

- Humans/Animals
- Cars/Factories
- Deforestation

10. Would there be carbon dioxide on the planet if humans did not exist? Yes □ No □

11. Have humans changed the amount of carbon dioxide that is produced each year? Yes □ No □

12. What are 2 things that humans do to decrease the amounts of carbon dioxide they produce?

- Use cars less - carpool, plant more trees
Procedure Assessment: *(10 minutes – Full Class – SciTrek Lead)*

- Pass out assessments.
- Read the question, changing variable (example: the changing variable was liquid type), and controls (example: the controls were liquid amount, container type, object type...). Do not read changing variable or control values.
- Read each statement and have students underline controls/circle changing variables/box data collection, and then have students circle if the statement could be an appropriate procedure step.
- Collect assessments.

Tie to Standards: *(50 minutes – Full Class – SciTrek Lead)*

Predictions of Experimental Bottles in the Light: Bottles B1, B2, B3, B4, and B5 (12 minutes)

- Remind students they have been observing the color of the solution and trying to determine why the color is changing.
- Tell the students that you did an experiment the previous day and you brought the bottles from your experiment for the class to observe.
- On their own have students predict the color of the solution in each bottle.
 - Have one student share what they think the color will be and explain why.
 - Record “Y” for yellow
 - Record “G” for green
 - Record “B” for blue
- After each prediction, show the experimental bottle for that prediction and have students record the actual color on their chart.
- Ask students what all solutions that turned yellow/green had in common. Students should say that they all contained animals.
- Fill in question 2.
 - Ask students if all solutions that were under the light for 24 hours changed color. Students should say “no.”
- Check “no” for question 3.
- Lead students to understand that the solutions that remained blue did so because they did not have animals in them.
- Fill in question 4.

Determination of what is Causing Color Change: Bottles B0 and B00 (12 minutes)

- Lead students to understand that the animals breathe in oxygen and breathe out carbon dioxide, which is why the solution is changing colors.
 - Students may suggest that animals going to the bathroom changes the color of the solution. Tell students that you have done this experiment and did not observe a color change.
- Ask students if there is a way that we can test if carbon dioxide is causing the color change.
 - Lead students into coming up with the idea of putting dry ice in the solution.
- Put the piece of dry ice into the solution to verify for students that carbon dioxide is changing the color.
- Ask students if they think you could change the solution color if you blew into it with a straw.
- Get a straw and blow into the solution, proving that you can change the color.
 - Discuss that you can change the solution color faster than the animals can.
• Ask students why the solution in the plant bottles did not change color.
 o Students should respond that plants take in light and carbon dioxide and give off oxygen in a process called photosynthesis.
• Ask students how they could change a solution that was yellow back to blue.
 o They can put a plant in it and leave it under light.

Prediction of Experimental Bottles in the Dark: Bottles B6, B7, B8, B9, and B10 (12 minutes)

• Tell students that you did an additional experiment with the same contents, but this time they were in the dark for 24 hours.
• On their own have students predict the color of the solution in each bottle.
 o Have one student share what they think the color will be and explain why.
 ▪ Record “Y” for yellow
 ▪ Record “G” for green
 ▪ Record “B” for blue
• After each prediction, show the experimental bottle for that prediction and have students record the actual color on their chart.
• Ask students what the color of the solution tells us about animals in the dark and fill in question 6.
• Ask students what the color of the solution tells us about plants in the dark (plants can produce carbon dioxide).
 o What is needed for photosynthesis?
 ▪ Light
 o Plants cannot do photosynthesis in the dark so the only do respiration (like animals) in the dark.

The Broader Picture: Bottle B000 (14 minutes)

• Have students look at the graph and answer questions 8a-d.
• Ask students to summarize what the graph tells us about carbon dioxide levels in the atmosphere.
• Fill in question 8e.
• Ask students what is different now than in the 1800’s and before.
 o Cars did not exist yet.
• Do cars produce carbon dioxide?
 o Yes
• Bubble car exhaust through a straw into the bottle to show that car exhaust contains carbon dioxide.
 o If you do not use all of the car exhaust, replace the binder clip on the balloon to reseal the balloon.
 o Students should see that the car exhaust turned the solution yellow faster than you did, so the car exhaust produces much more carbon dioxide than is produced in respiration.
• Ask students for three things that contribute to increasing amounts of carbon dioxide in the atmosphere and fill in question 9.
• Ask if there would be carbon dioxide on the planet if humans did not exist (yes).
• Ask if humans have changed the amount of carbon dioxide produced each year (yes).
• Have students come up with several ways to decrease the amounts of carbon dioxide humans produce and record two of them on question 12.
EXTRA PRACTICE

Procedures

QUESTION

If we change the variable, what will happen to the number of such as each index card?

EXPERIMENTAL SET-UP

<table>
<thead>
<tr>
<th>Changing Variable</th>
<th>Trial A</th>
<th>Trial B</th>
<th>Trial C</th>
<th>Trial D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jam Type:</td>
<td>Strawberry</td>
<td>Raspberry</td>
<td>Blackberry</td>
<td>Raspberry</td>
</tr>
<tr>
<td>Jam Amount:</td>
<td>50 g</td>
<td>50 g</td>
<td>50 g</td>
<td>50 g</td>
</tr>
<tr>
<td>Time:</td>
<td>3 hours</td>
<td>3 hours</td>
<td>3 hours</td>
<td>3 hours</td>
</tr>
<tr>
<td>Container Type:</td>
<td>Index Card</td>
<td>Index Card</td>
<td>Index Card</td>
<td>Index Card</td>
</tr>
<tr>
<td>Ant Type:</td>
<td>A.generic</td>
<td>A.generic</td>
<td>A.generic</td>
<td>A.generic</td>
</tr>
</tbody>
</table>

Directions

Step 1: Read each statement and underline Control. Circle changing variables and box information about data collection.

Step 2: Circle yes if the statement could be a correct step for a procedure about the question and experimental set-up above. If not, circle no.

- [] a Put 100 g of blueberry in each index card.
- [] b Put the ant on the blueberry in each index card.
- [] c Put the index card in the plastic box.
- [] d Make observations about the experiment.
- [] e Test the number of ant eggs on each index card after 3 hours.
- [] f Put 100 g of different types of jam on each index card.

Underline controls, circle changing variables, and box information.