Module 2: Plants
2nd Grade

About the Instructions:

This document is intended for use by classroom teachers, SciTrek leads, and SciTrek volunteers. The document has been composed with input from teachers, leads, volunteers, and SciTrek staff to provide suggestions to future teachers/leads/volunteers. The instructions are not intended to be used as a direct script but were written to provide teachers/leads/volunteers with a guideline to present the information that has worked in the past. Teachers/leads/volunteers should feel free to deviate from the instructions to help students reach the learning objectives of the module. Some places in which you can be creative and mold the program to meet your individual teaching style, or to meet the needs of students in the class are: during class discussions, managing the groups/class, generating alternative examples, and asking students leading questions. However, while running the module make sure to cover all the material each day within the scheduled 60 minutes. In addition, no changes should be made to the academic language surrounding observations or the observation activity.

Activity Schedule:
Day 2 must occur at least 4 days after day 1.

Day 1: Observation Assessment/Observation Activity/Observations/Question/Materials Page (60 minutes)
Day 2: Technique/Experimental Set-Up/Procedure/Results Table/Experiment (60 minutes)
Day 3: Experiment/Graph/Results Summary (60 minutes)
Day 4: Poster Making (60 minutes)
Day 5: Poster Presentations (60 minutes)
Day 6: Observation Assessment/Tie to Standards/Content Assessment (60 minutes)

The exact module dates and times are posted on the SciTrek website (http://www.chem.ucsb.edu/scitrek/elementary) under the school/teacher. The times on the website include transportation time to and from the SciTrek office (Chem 1105). Thirty minutes are allotted for transportation before and after the module, therefore, if a module was running from 10-11 then the module times on the website would be from 9:30-11:30.

Student Groups:

Students are divided into four groups of ~five students each for the entire module. One volunteer is assigned to help each group. We find groups work best when they are mixed levels and mixed language abilities.

NGSS Performance Expectation Addressed:

2-LS2-1 Plan and conduct an investigation to determine if plants need sunlight and water to grow.

Common Core Mathematics Standards:

2.MD-4 Measurement and Data (Measure to determine how much longer one object is than another, expressing the length difference in terms of a standard length unit.)

2.MD-9 Measurement and Data (Generate measurement data by measuring lengths of several objects to the nearest whole unit, or by making repeated measurements of the same object. Show the measurements by making a line plot, where the horizontal scale is marked off in whole-number units.)
2.MD-10 Measurement and Data (Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph.)

**Learning Objectives:**

1. Students will be able to list at least two variables that affect plant growth.
2. Students will know how to use a ruler to measure an object.
3. Students will be able to graph and interpret data.
4. Students will be able to generate at least three observations about a given system and identify statements that are not observations.
5. Students will be able to list at least two ways that they behaved like scientists.

**Classroom Teacher Responsibilities:**

In order for SciTrek to be sustainable the program needs to work with teachers on developing their abilities to run student-centered inquiry-based science lessons on their own in their classroom. As teachers take over the role of SciTrek lead, SciTrek will expand to additional classrooms. Even when teachers lead the modules in their own classroom, SciTrek will continue to provide volunteers and all of the materials needed to run the module. Below is a sample timeline for teachers to take over the role as the SciTrek lead.

* Groups are made up of ~5 students.
1. Module 1 & 2 (year 1)
   a. Classroom Teacher runs a Group
2. Module 3 (year 2)
   a. Classroom Teacher runs a Group and Starts Leading Class Discussions
      i. Classroom teacher will start leading parts of group discussions (examples: observation activity, tie to standards, etc.).
3. Module 4 (year 2)
   a. Classroom Teacher leads the Class with Co-Lead Volunteer
      i. Classroom teacher will be responsible for leading entire class discussions (examples: observation activity, tie to standards, etc.).
      ii. Classroom teacher will be responsible for time management.
      iii. Classroom teacher will be responsible for overseeing volunteers and helping any groups that are struggling.
      iv. Classroom teacher will be responsible for all above activities, the SciTrek co-lead will only step in for emergencies.
4. Any Additional Modules (year 3 and beyond)
   a. Classroom Teacher Leads the Class
      i. Classroom teacher will be responsible for leading entire class discussions (examples: observation activity, tie to standards, etc.).
      ii. Classroom teacher will be responsible for time management.
      iii. Classroom teacher will be responsible for overseeing volunteers and helping any groups that are struggling.

SciTrek staff will be counting on teacher involvement. Teachers should notify the SciTrek staff if they will not be present on any day(s) of the module. Additional steps can be taken to become a SciTrek lead faster than the proposed schedule above. Contact scitrekadmin@chem.ucsb.edu to learn more.
In addition, teachers are required to come to UCSB for the module orientation, ~one week prior to the start of the module. Contact scitrekadmin@chem.ucsb.edu for exact times and dates, or see our website at http://www.chem.ucsb.edu/scitrek/elementary under your class’ module times. At the orientation teachers will go over module content, learn their responsibilities during the module, and meet the volunteers that will be helping in their classroom. If you are not able to come to the orientation at UCSB you must complete an online orientation. Failure to do an orientation for the module will result in loss of priority registration for next year.

Prior to the Module (at least 1 week):

1. Come to the SciTrek module orientation at UCSB.
2. Inform SciTrek staff if your class uses any method of subtraction other than what is shown below.

<table>
<thead>
<tr>
<th>RESULTS Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Seed Type</td>
</tr>
<tr>
<td>Soil Type</td>
</tr>
<tr>
<td>Liquid Amount</td>
</tr>
<tr>
<td>Light Amount</td>
</tr>
<tr>
<td>Nutrient Type</td>
</tr>
<tr>
<td>Nutrient Amount</td>
</tr>
<tr>
<td>Time</td>
</tr>
<tr>
<td>Initial Plant Height</td>
</tr>
<tr>
<td>Final Plant Height</td>
</tr>
<tr>
<td>Change in Plant Height</td>
</tr>
<tr>
<td>Other Observations</td>
</tr>
</tbody>
</table>

During the Module:

If possible have a document camera available to the SciTrek lead every day of the module. If you do not have a document camera please tell the SciTrek staff at orientation.

Days 1-4:
Have the students’ desks/tables moved into four groups and cleared off. This ensures that each student has a desk to sit at during SciTrek activities and that students can begin the module as soon as SciTrek arrives.

Days 2-3:
Have a spot in your classroom where 7 lights can be plugged in (3 plugs) and placed on top of ~5 Xerox boxes. These lamps need to be kept on until the next SciTrek meeting.

Days 5 and 6:
Have the students’ desks/tables cleared off. The desks/tables do not need to be moved into groups.

Scheduling Alternatives:

Some teachers have expressed interest in giving the students more time to work with the volunteers throughout the module. Below are options that will allow the students more time to work with the volunteers. If you plan to do any of the following options, please inform the SciTrek staff no later than
your orientation date (~one week before your module, exact orientation times are found at: http://www.chem.ucsb.edu/scitrek/elementary). This will allow the SciTrek staff to provide you with all needed materials.

Day 1:
If you would like to have more time for your students to make observations and choose their changing variable, you can do one or both of the following activities before SciTrek arrives:
1) Observation assessment
2) Observation activity

Day 2:
If you would like to have more time for your students to design and start their experiments, you can go over the technique discussion before SciTrek arrives.

Day 5:
If you would like to have more time for your students to discuss their experiments during poster presentations, you may take more time for each presentation and finish the presentations after SciTrek leaves.

Day 6:
If you would like more time for the tie to standards activity, you may give the observation assessment before SciTrek arrives.

Materials Used for this Module:

1. Wisconsin Fast Plants 200 seeds per pack (Amazon)
2. 9 oz Clear plastic cups (Smart and Final) with 0.5 inch hole drilled in the center of the bottom
3. 20 oz Clear plastic cups (Smart and Final)
4. 3 oz cups any material (grocery store)
5. Multipurpose terry towel 14 in x 17 in (Home Depot) cut into 5 cm x 15 cm pieces
6. Miracle Gro Potting Mix (Home Depot)
7. Vermiculite (Home Depot)
8. Play sand (Home Depot)
9. Aquarium rocks (Petco)
10. Water
11. Sugar solution (mix an 8 oz water bottle with half Karo light corn syrup and half water)
12. Saturated salt solution (boil water and then add in as much salt as you can get to dissolve in the solution—about 36 g of salt for every 100 mL)
13. Fertilizer liquid (Boreal Science part number: 8202104)
14. Nalgene graduated cylinders 100 mL (Fisher part number: 08-572D)
15. Nalgene graduated cylinders 250 mL (Fisher part number: 3663-0250)
16. Disposable pipets (droppers) (Fisher Part Number: 13-711-7M)
17. Metric Ruler 30 cm/300 mm (Carolina Biological part number: 702613) Note: Cover cm part with masking tape so students measure in millimeters.
18. Gooseneck desk lamps (with adjustable heads) (Target part number: Room Essentials Gooseneck Desk Lamp)
19. Light bulbs (60 W equivalent LED (800 lumen) light bulbs) (Philips part number: 046677455507) Make sure that you use LED light bulbs because the seeds will not grow as well if you use a different light bulb
20. Extension Cord
21. Boxes for different amounts of light are hand made by taking a Xerox box and cutting an 11.5 cm diameter hole in the top of the box (when the box is on its side) and taping on a 13 cm x 14 cm polarizing filter over the hole (Education Innovations part number: PF-12). The different amounts of light are then made by having the 750 lumen incandescent bulbs go through: one filter (level 4), two filters that are aligned (level 3), two filters that are 45° to each other (level 2), and two filters that are
75° to each other (level 1). All filters are taped to the top of the box so that they will not move. Another Xerox box is available with no holes to provide a dark environment (level 0). A picture of one of the boxes is seen below.

All printed materials used by SciTrek (student notebooks, materials page, lead picture pack, poster parts, instructions, and nametags) can be made available for use and/or editing by emailing scitrekadmin@chem.ucsb.edu.

**Module Notes:**

~7 days prior to the module:

Plant the seeds for the original observation ~7 days before the first day of the module. Take 12 small cups (9 oz) with 0.5 inch hole in the in the center and insert a 15 cm × 5 cm piece of towel through the hole, so that there is ~4 cm sticking into the small cup and ~11 cm hanging out. Place the small cups into larger cups (20 oz). Fill each small cup with ~6 oz of soil (4 set-ups of each of the following, 12 set-ups total: a) potting soil, b) vermiculite, and c) aquarium rocks). Put 2 seeds, no more than 0.5 cm below the soil, in each of the small cups and pour 200 mL of water over them. Place the cups under constant light until the start of the module. On the day of the module if both seeds have sprouted remove one sprout so that there is only one plant per cup.

4 days prior to day 2 of the module:

Use the same set-up as above to make cups with potting soil or vermiculite as the soil type depending on the requested soil type for each group. Make ~10% more cups than needed of each of the two soil types in case some seeds do not sprout. Put 2 seeds in each of the cups and pour 200 mL of water over them. Place the plants under light. Before taking the plants to the classroom remove the excess water in the large cup. If both seeds have sprouted remove one sprout so that there is only one plant per cup.
Day 1: Observation Assessment/Observation Activity/Observations/Question/Materials Page

Schedule:

- Introduction (SciTrek Lead) – 2 minutes
- Observation Assessment (SciTrek Lead) – 5 minutes
- Observation Activity (SciTrek Lead) – 12 minutes
- Observation Discussion (SciTrek Lead) – 7 minutes
- Observations (SciTrek Volunteers) – 16 minutes
- Question Discussion (SciTrek Lead) – 3 minutes
- Question (SciTrek Volunteers) – 9 minutes
- Materials Page (SciTrek Volunteers) – 4 minutes
- Wrap-Up (SciTrek Lead) – 2 minutes

Materials:

- (4) Volunteer Boxes:
  - □ Student nametags
  - □ (7) Student notebooks
  - □ Volunteer instructions
  - □ Volunteer lab coat
  - □ (3) Materials pages (one for each possible variable)
  - □ (2) Pencils
  - □ (7) Mechanical pencils
  - □ (2) Wet erase markers
  - □ Scotch tape
  - □ Paper towels

- Other Supplies:
  - □ (4) Large group notepads
  - □ (4) Trays
  - □ Lamp with 750 lumen LED bulb
  - □ Bucket with lid
  - □ (4) Just made cups set-up with potting soil (labeled A)
  - □ (4) Just made cups set-up with vermiculite (labeled B)
  - □ (4) Just made cups set-up with rocks (labeled C)
  - □ (4) 7 Days old cups set-up with potting soil (labeled 1)
  - □ (4) 7 Days old cups set-up with vermiculite (labeled 2)
  - □ (4) 7 Days old cups set-up with rocks (labeled 3)

- Lead Box:
  - □ (5) Blank nametags
  - □ (3) Extra student notebooks
  - □ Lead instructions
  - □ Plants picture packet
  - □ Lead lab coat
  - □ (25) Observation assessments
  - □ Time card
  - □ (3) Materials pages (one for each possible variable)
  - □ (2) Pencils
  - □ (2) Wet erase markers
  - □ (4) Markers (purple, green, blue, orange)
  - □ Scotch tape
  - □ Paper towels
  - □ Water (at least 200 mL)
  - □ (2) 100 mL Graduated cylinders
  - □ 250 mL Graduated cylinder
  - □ 20 oz Cup unmarked
  - □ 9 oz Cup with hole in bottom
  - □ (2) 3 oz Colored cups
  - □ Cloth strip
  - □ Vermiculite
  - □ (25) Cotton balls
  - □ Dropper
  - □ (2) Polarizing filters
**SCIENTIFIC PRACTICES**

**Observations**

Observation: A description using your 5 senses

- The object is smaller than a jump rope.
- The object is made out of metal.
- The object is hotter than boiling water.
- The object is simple.
- The object has a pointed end.
- The object can be twisted at one end.
- The object has been used to write many words.

Circle OBSERVATION if the statement is an observation you can make about the object. Circle NOT AN OBSERVATION if the statement is not an observation you can make about the object.

**OBSERVATIONS**

- Cup A: potting soil
  - water is dirty
  - absorbed more water than rocks
  - absorbed less water than vermiculite

- Cup B: vermiculite
  - water is clear
  - absorbed the most water
  - least amount of water in bottom cup

- Cup C: rocks
  - water is clear
  - absorbed the least water
  - most amount of water in bottom cup

**Other Observations:**
- cups were just made
- no plant growth in any of the cups
- all soils are wet

**OBSERVATIONS**

- System is made from 2 cups (1 large cup and 1 small cup)
- Piece of towel stuck through the bottom of the small cup
- 2 cups of vermiculite in small cup
- 200 mL of water poured through the soil
- Cup put under white light

**Cup 1:**
- Potting soil
  - No water in the bottom of the cup
  - Soil is wet
  - Largest plant
  - Plant has 4 leaves

**Cup 2:**
- Vermiculite
  - No water in the bottom of the cup
  - Small plant
  - Plant has 3 leaves

**Cup 3:**
- Cup has water in the bottom of it
- Rocks feel dry
- No plant growth

**Other Observations:**
- There cups were under white light for 7 days.
- Cups with plants had wet soil and no water in the bottom of the cup.
- Rocks had the most water in the large cup.
Set-Up:

SciTrek Lead:

Fill two 100 mL graduated cylinders with 100 mL of water each. Fill two 3 oz cups completely full of vermiculite. Plug in the lamp. Set out materials for experimental set-up demonstration ((2) 3 oz cups of vermiculite, (2) 100 mL graduated cylinders with 100 mL of water, large cup, small cup with hole, ruler, and cloth strip).

Have two polarized filters and a 250 mL graduated cylinder available to show students during the observation discussion.

If the classroom has a document camera, ask the teacher to use it for the observation activity (page 2, student notebook). If the classroom does not have a document camera, then tape the example poster-size notebook page to the front board.

On the board, write the four group colors (orange, blue, green, and purple) and the name(s) of the volunteer(s) that will be working with each group.

SciTrek Volunteer:

Put your name, the teacher’s name, and your group color on the top of your group notepad.

As students are taking the observation assessment, walk around the room and quietly place the students’ nametags, which are in your group box, on each student’s desk.

Have SciTrek notebooks and mechanical pencils available to pass out after students complete their assessment.

Once you have passed out the nametags, assemble the experimental set-up (seen in picture below) on a tray. Use the following steps to help you with the set-up:

---

### Table: Variables

<table>
<thead>
<tr>
<th>Factor</th>
<th>Changing Variable</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid</td>
<td>Water Amount</td>
<td>Plant Height (mm)</td>
</tr>
<tr>
<td></td>
<td>Nutrient Amount</td>
<td></td>
</tr>
<tr>
<td>Light</td>
<td>Light Amount</td>
<td>Plant Height (mm)</td>
</tr>
</tbody>
</table>

**Question:**

If we change the **light amount**, what will happen to the amount of plant growth?

---

First choose/circle the factor that you would like to experiment with. Then within that row, circle what you would like to be your changing variable. Finally, circle the measurement you will make.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Changing Variable</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid</td>
<td>Water Amount</td>
<td>Plant Height (mm)</td>
</tr>
<tr>
<td></td>
<td>Nutrient Amount</td>
<td></td>
</tr>
<tr>
<td>Light</td>
<td>Light Amount</td>
<td>Plant Height (mm)</td>
</tr>
</tbody>
</table>

**Question:**

If we change the **light amount**, what will happen to the amount of plant growth? (independent variable) what you are measuring (dependent variable)
1. Get three plants (one of each: 1) potting soil, 2) vermiculite, 3) rocks) that are 7 days old and place on tray.
2. Get three plants (one of each: A) potting soil, B) vermiculite C) rocks) that were just made and place on tray.

![Image of plants](image_url)

**Introduction:**
(2 minutes – Full Class – SciTrek Lead)

“Hi, we are scientists from UCSB and we want to show you what we do as scientists. We will show you an experiment and then you can make observations and design your own experiment to help answer the class question. We want to show you that you can do science and have fun.”

If you are a teacher that is leading the class tell your students that they are going to start a long-term science investigation and you have asked some scientists from UCSB to come and help. Allow the UCSB volunteers to introduce themselves and share their majors.

**Observation Assessment:**
(5 minutes – Full Class – SciTrek Lead)

As the students are taking the assessment, the volunteers should get the student nametags out of their group boxes and walk around the room locating their students. Have the volunteers quietly lay each student’s nametag on their desk. If students do not have their name on their paper remind them to do so. After volunteers have handed out the nametags they should assemble the experimental set-up.

“Before we start with the module we will determine how your ideas on observations are developing.” Pass out the observation assessment and a cotton ball to each student. Tell students to fill out their name, teacher’s name, and date at the top of the assessment. Remind the students that it is important that they fill out this assessment on their own.

Read the instructions to the students. Then read each of the statements and tell students to circle “observation” for statements that are observations or “not an observation” for statements that are incorrect observations or statements that cannot be observations. When students are finished, collect the assessments and the cotton balls and verify that the student’s name is on the top of the paper.

**Observation Activity:**
(12 minutes – Full Class – SciTrek Lead)

As soon as students complete the observation assessment, volunteers should pass out a SciTrek notebook to each student.
Have students fill out their group color (color of their name on their nametag: orange, blue, green, or purple), their name, teacher’s name, and volunteer’s name (volunteer’s names should be written on the board next to the group color they will be working with) on the front cover of their SciTrek notebook. If a student does not have a nametag, only have them fill out their name and teacher’s name on the cover of their SciTrek notebook. They will be placed in a group when the class gets into groups for observations and they can fill out their group color and volunteer at that point.

Tell the class that for this module we are going to work together to try to answer the question, “What variables affect plant growth?” The first thing we will do in this module is make observations of several plants.

Put page 1 of the picture packet under the document camera (see below). Tell the students that scientists make lots of observations. Ask the class, “What is an observation? What are the types of things that you can record for an observation?” If they have trouble, show them an object and let them make observations. Help them realize that observations are descriptions of things using their five senses. As they come up with what they can use to make observations record these on the chart. Then, write the definition of observation under the list and have the students tell you the definition a few times. Have students generate an observation about something in the classroom using each of their senses other than taste.

<table>
<thead>
<tr>
<th>Observations</th>
<th>Not Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sight</td>
<td>Inferences</td>
</tr>
<tr>
<td>touch</td>
<td>Opinions</td>
</tr>
<tr>
<td>hearing</td>
<td>Incorrect Observations</td>
</tr>
<tr>
<td>smell</td>
<td></td>
</tr>
<tr>
<td>taste</td>
<td></td>
</tr>
</tbody>
</table>

Observation: A description using your **5 senses**
Ask the class if there are statements that are not observations. Students should be able to come up with opinions, incorrect observations, and inferences. Record these under “not observations” on the chart. Remind students that inferences are something that you think might be true based on past experiences. For instance, in the mini module when they thought the object in the candle holder was a “candle” before it was eaten. Have students give you examples of statements that are opinions (example: chocolate chip cookies taste better than ice cream), incorrect observations, and inferences (example: the white lab coats are bought from K-Mart). If they are unable to come up with these categories or cannot give you an example, give them an example statement in each category and then have them identify the type of statement. Afterwards, have students generate another example.

Have the volunteers pass out a mechanical pencil, in their group box, to each student.

Tell the class that they are now going to do an activity where they look at a list of possible observations about the object that was just put on their desk (mechanical pencil). They will then decide if each statement is an observation or not an observation that can be made about the object.

Have students turn to page 2 of their notebooks and place a blank notebook under the document camera and turn to page 2. Have students fill in the blank for the definition of observation at the top of the page. Then have them repeat the definition to you a few times.

Read the directions aloud to the class. Have students classify each statement by themselves circling what they think is the correct answer. After everyone has had a chance to work through the activity (~3 minutes) go over the answers as a class. Tell students that we are now going to go over each answer and that they shouldn’t erase their answers. Instead, tell the students to box the correct answers so that they will have an idea of the concepts/categories they are struggling with. Read each of the statements to the students and then ask for a student to tell you whether it is an observation or not an observation about the object and why. Then, have the class vote using thumbs up/thumbs down if they agree/disagree with the student’s reasoning. If many students in the class disagree with the response of the original student, have the other students tell why they do not agree. If needed, let them have “mini conferences” with the students that are sitting in their area. In addition, have students identify the sense that they used to classify the statement. As you go over each statement, box the correct answer on the example notebook under the document camera. If the statement is an observation, write down which sense students used and if the statement is not an observation, write down why it is not an observation in the example notebook. Students do not need to write these in their notebook.
Below are the answers to 1-7 on page 2 in detail.

**Number 1:** The object is smaller than a jump rope.

*Observation – With Sight (Comparison)*

Is the statement an observation or not an observation?
Observation

What sense did you use to make this observation?
Sight

**Number 2:** The object is made out of metal.

*Not an Observation – False with Sight*

Is this statement an observation or not an observation?
Not an observation

Why is this statement not an observation?
The object is made of plastic not metal.

What sense did you use to tell this?
Sight

**Number 3:** The object is hotter than boiling water.

*Not an Observation – False with Sense (Comparison)*

Is this statement an observation or not an observation?
Not an observation

Why is this statement not an observation?
The object is cooler than boiling water, not hotter.

What sense did you use to tell this?
Touch
Number 4: The object is simple.

*Not an Observation – Opinion*

Is this statement an observation or not an observation?
Not an observation

Why is this statement not an observation?
This statement is an opinion. Some people might think that mechanical pencils are simple but others might think they are complex.

---

Number 5: The object has a pointed end.

*Observation – With Sight*

Is this statement an observation or not an observation?
Observation

What sense did you use to make this observation?
Sight

---

Number 6: The object can be twisted at one end.

*Observation – With Sense (Need to Test)*

Is this statement an observation?
If you have twisted one end of the pencil then the statement is an observation. If you have not tested it then the statement is not an observation, it is an inference.

**Note:** Make sure that all students twist the end of the object making this statement an observation.

What sense did you use to make this an observation?
Touch

---

Number 7: The object has been used to write many words.

*Not an Observation – Inference*

Is this statement an observation or not an observation?
Not an observation

Why is this statement not an observation?
This statement is an inference because there is no way to tell if the object has been used to write many words. Since pencils are used to write words the pencil could have been used to write many words but it also could been new and unused or only used to draw pictures.

---

Observation Discussion:
*(7 minutes – Full Cass – SciTrek Lead)*

Tell students we will now use the skills that we learned to make observations in our module. Ask students if they remember the question the class will be investigating. (What variables affect plant growth?) If students do not remember, show them it is on the front of the notebook. Ask the students, what are some variables that might affect plant growth? Possible answers: light amount, water amount, soil type, etc. Make sure that in your discussion students come up with soil type as one of the variables. Tell the class that they will first explore how soil type affects plant growth.
Tell the students to find out how the soil type affects plant growth, you planted seeds in three different soil types (potting soil, vermiculite, and rocks) 7 days ago, and you are now going to show students how you planted the seeds. Take out the large (20 oz) and small (9 oz) cups. Feed the towel (5 cm X 15 cm) through the hole in the bottom of the small cup, so that there is ~4 cm of towel sticking into the small cup and ~11 cm of towel hanging out. Get out the vermiculite and walk around the class showing it to the students. Tell the students that this is a special type of soil called vermiculite that they will be working with during the observations today. Have them say the word vermiculite with you so that they remember the word. Pour two 3 oz cups of vermiculite into the small cup. Place a seed into the cup of vermiculite. Put the small cup into the large cup. Have a student tell you the amount of water in each of the graduated cylinders (100 mL each) and then pour the 200 mL of water through the cups. Place the cup under the lamp and turn the light on.

Tell students that they will first make observations about the experimental set-up (what you just showed them), followed by the seeds that were just planted this morning (lettered cups), and then they will finish by making observations about the plants that are 7 days old (numbered cups). Tell the class they will now get in their group and make observations. Tell each colored group where to go and to bring their notebook and a pencil.

If a student does not have a nametag, identify the group with the least number of students in it and write the student’s name on one of the extra nametags that are in the lead box using that color of marker.

**Observations:**

*(16 minutes – Groups – SciTrek Volunteers)*

Once the students come over to your group, have them sit in boy/girl fashion. Students will not be using their notebook until they generate a question. Feel free to collect the notebooks and redistribute them when they generate their question. Make sure the table is set-up as described in the set-up section.

As a group, have the students come up with observations about the experimental set-up that was just shown to them and record them on page 1 of the group notepad.

Once students have exhausted these observations bring out the lettered cups that were just made. Have students come up with observations about the contents of each cup and record these on page 2 of the group notepad. Students should observe the relative amount of water in the bottom of each cup. In the other observations section, record comparisons between the three cups or other general observations of the set-up. During this time discuss with your group which soil type absorbed the most water (vermiculite) and which soil type absorbed the least water (rocks). Ask students if they are surprised by these results.

**Note:** students have already completed a module on soil water retention earlier in the year so they should be able to relate the previous module about how different soil types absorb different amounts of water to the current module. An example of the group notepad is seen below.

After your group has made observations about the lettered cups, have the students make observations of the cups that were planted seven days ago, which are labeled by numbers and record these on page 3 of the group notepad. Repeat the process by recording the contents of each cup and then general observations under the other observations heading. Have the students compare the relative amounts of water in each of the cups and talk again about the amount of water that each soil type has absorbed.

If there is additional time, have the students summarize what they saw and learned. Make sure that students know that for this experiment the changing variable was soil type and they were learning how this variable affected plant growth.
An example group notepad is seen below; feel free to deviate from the example. Students do not need to record their observations into their notebooks.

**Question Discussion:**

(3 minutes – Full Class – SciTrek Lead):

Have each group share one of their observations with the rest of the class.

Review with the class how the plants changed over time.
Ask the students if soil type affects plant growth and what evidence they have to support this. The students should reply that soil type affects plant growth because they observed the plants in the different soil types to be different heights. Ask students if they wanted to grow the tallest plant, what type of soil they would use. Students should tell you that they would want to use potting soil to get the tallest plant. Ask students if they think that plants would grow well if they replaced the soil in their garden with rocks and why they think this. They should say that plants wouldn’t grow well if their garden soil was replaced by rock because rocks do not absorb water. Therefore, their plants would not get any water and die. Tell students that we have now learned that soil type affects plant growth and in order to get plants to grow we need a soil that absorbs water.

Tell students that they will now get to pick another variable that might affect plant growth to investigate within their group. The variables that they will get to pick from are some of the variables that they suggested before. They can either pick to explore if liquid or light affects plant growth. If they are interested in exploring how light affects plant growth they can change the light amount. To manipulate the light amount they will be using boxes with polarizing filters. Get the two filters from the lead box. Face the light (that was on the plants) towards the class. Put the filters in front of the light and show students what happens when they are rotated. If they are interested in exploring how liquid affects plant growth they can manipulate either the water amount or the nutrients amount. Tell students that the nutrients that they will be able to choose from include sugar, fertilizer, and salt. Tell students that if they decided to manipulate water amount they will get to use the special 250 mL graduated cylinder which is over double the size of the graduated cylinders that students will use in the other experiments. Shows students the larger graduated cylinder. Tell students they will now vote in their groups about what they want to investigate and determine their question.

**Question:**

*(9 minutes – Groups – SciTrek Volunteers)*

Have students turn to page 3 of their notebooks. Then have them decide (by voting) if they are interested in investigating how liquid or light affects plant growth. If there is a tie, then the volunteer will make the deciding vote. Encourage your group to have factors/changing variables that are not being explored by other groups. Once they have decided on which factor they will investigate, have students circle what they chose in their notebooks. Then have them decide what their changing variable will be. If they decide to investigate a liquid factor, have them choose if their changing variable will be water amount or nutrient amount. If they decide to investigate a light factor, their changing variable will be the light amount. All experiments will measure the change in plant height.

As a group, discuss why/how they think their changing variable will affect plant growth.

Use their changing variable to generate the question that the group is going to investigate and write it in the group notepad and have students copy it into their notebooks. An example of the group notepad/student notebook is seen below.
Get the materials page (see below) that corresponds to the changing variable that your group selected and tape it into the group notepad. Have students use the materials page to determine the values for their changing variable and controls. When selecting the values of the changing variable, ask students if they think a wide or a narrow range of values would help them more effectively answer their question. For changing variable values write the students name that will be in charge of each trial next to each value.

Students will not fill in the experimental set-up page in their notebook until the next SciTrek meeting.
**Wrap-Up:**
*(2 minutes – Full Class – SciTrek Lead)*

Tell the students that they have taught you a lot about how the soil affects plant height. You now know that potting soil produces the largest plant.

Tell the students that the next time we meet they will get to design a procedure based on their question and then start their experiments. Tell the students that all of the class experiments will help us be able to answer the question: What variables affect plant growth?

**Clean-Up:**

Before you leave, have students attach their nametags to their notebooks and place them in the group box. Bring all materials back to UCSB. In addition, put your lab coat back into your group box.
Day 2: Technique/Experimental Set-up/Procedure/Results Table/Experiment

**Schedule:**

- Introduction (SciTrek Lead) – 2 minutes
- Technique (SciTrek Lead) – 10 minutes
- Experimental Set-Up (SciTrek Volunteers) – 7 minutes
- Procedure (SciTrek Volunteers) – 19 minutes
- Results Table (SciTrek Volunteers) – 5 minutes
- Experiment (SciTrek Volunteers) – 15 minutes
- Wrap-Up (SciTrek Lead) – 2 minutes

**Materials:**

(4) Volunteer Boxes:
- ☐ Student nametags
- ☐ Student notebooks
- ☐ Volunteer instructions
- ☐ Volunteer lab coat
- ☐ (2) Pencil
- ☐ (2) Wet erase markers
- ☐ (7) Rulers (mm)
- ☐ Paper towels
- ☐ (3) Water (8 oz bottles)
- ☐ (5) Droppers
- ☐ (5) 100 mL Graduated cylinders (if groups changing variable is water amount use (5) 250 mL graduated cylinders)
- ☐ Nutrient (if needed)

Other Supplies:
- ☐ (4) Large group notepads
- ☐ Requested boxes to change light amount
- ☐ Bucket with lid
- ☐ Requested number of plants in potting soil labeled with group color and plant number
- ☐ Requested number of plants in vermiculite labeled with group color and plant number
- ☐ Lamps with 750 lumen LED bulb (1 lamp per light amount box plus one extra for full light)
- ☐ 2 Extension cords

Lead Box:
- ☐ (5) Blank nametags
- ☐ (3) Extra student notebooks
- ☐ Lead instructions
- ☐ Plants picture packet
- ☐ Lead lab coat
- ☐ Time card
- ☐ (2) Pencils
- ☐ Sharpie
- ☐ (2) Wet erase markers
- ☐ (4) Markers (purple, green, blue, orange)
- ☐ (3) Water (8 oz bottles)
- ☐ (5) Droppers
- ☐ Masking tape
- ☐ (2) 100 mL Graduated cylinders
- ☐ (2) 250 mL Graduated cylinders
- ☐ Salt solution (full 8 oz bottle)
- ☐ Sugar solution (full 8 oz bottle)
- ☐ Liquid Fertilizer (full 8 oz bottle)
**SciTrek Notebook Pages and Notepad Pages:**

**TECHNIQUE**

Rulers are used to measure lengths of different items.

*How to measure an item using a ruler:*
1. Line up the zero mark on the ruler with one end of the item.
2. Follow the item down the ruler.
3. Record the measurement to the nearest whole number on the ruler at the other end of the item.
4. Repeat.

*What is the height and width of each item?*

1. **Height:** 24 mm  **Width:** 70 mm

2. **Height:** 81 mm  **Width:** 41 mm

3. **Height:** 57 mm  **Width:** 45 mm

**EXPERIMENTAL SET-UP**

**Changing Variable:** Light amount

**Controls (variables you will hold constant):**

<table>
<thead>
<tr>
<th>Seed Type</th>
<th>Fast Plant</th>
<th>Nutrient type</th>
<th>No nutrients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil type</td>
<td>potting soil</td>
<td>liquid amount</td>
<td>100 mL</td>
</tr>
<tr>
<td>time</td>
<td>3 days</td>
<td>nutrient type</td>
<td>No nutrients</td>
</tr>
</tbody>
</table>

**PROCEDURE**

2. Pour 100 mL of water on each plant and no nutrients.
4. Wait 3 days.
5. Measure plant height and subtract to find how much the plant grew.

**EXPERIMENTAL SET-UP**

**Changing Variable:** Light amount

**Controls (variables you will hold constant):**

<table>
<thead>
<tr>
<th>Seed Type</th>
<th>Fast Plant</th>
<th>Nutrient type</th>
<th>No nutrients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil type</td>
<td>potting soil</td>
<td>liquid amount</td>
<td>100 mL</td>
</tr>
<tr>
<td>time</td>
<td>3 days</td>
<td>nutrient type</td>
<td>No nutrients</td>
</tr>
</tbody>
</table>

**PROCEDURE**

2. Pour 100 mL of water on each plant and no nutrients.
4. Wait 3 days.
5. Measure plant height and subtract to find how much the plant grew.
**Set-Up:**

SciTrek Lead:

Set-up the light level boxes (levels 0-4) if needed, in ascending order with the light turned on sitting on top of the boxes with the front lids removed. Set up an additional lamp for level 5 lighting, note this will not be in a box. Do not plug extension cords into other extension cords.

If the classroom has a document camera, ask the teacher to use it for the technique discussion (page 4, student notebook). If the classroom does not have a document camera, then tape the example poster-size notebook pages to the front board.

SciTrek Volunteer:

Set out student notebooks.

- If students are not in the classroom before SciTrek starts set out the notebooks and a ruler where you want students to sit when they come in the classroom.
- If students are in the classroom when SciTrek starts pass out the notebooks and a ruler to students in their regular seat. Students will move into their groups after the technique discussion.

Get your groups plants and set them aside to use when students are ready to start their experiments.
**Introduction:**

*(2 minutes – Full Class – SciTrek Lead)*

If needed while you are doing the introduction have the SciTrek volunteers pass out SciTrek notebooks/nametags to students along with a ruler. Students will move to their group spots after the technique discussion.

Ask students what they did the last SciTrek meeting. They should reply they made observations about plants that were just planted and plants that were 7 days old. In addition, students should say that they came up with a question that they are going to design an experiment around. Remind students that each group’s research is going to help answer the class question. Ask the class what is the class question that we are investigating? The students should reply: What variables affect plant growth? Ask the class, how will we tell if a variable affects plant growth? How did we know that potting soil was a “better” soil to grow plants in than rocks? They should reply that they will look at the height of the plants to be able to tell how different soils affected plant growth. Tell students “one way that we can be more precise about the height of the plant is to use a ruler to measure the plant. We will now practice using rulers before you start planning and carrying out your experiment.”

**Technique:**

*(10 minutes – Full Class – SciTrek Lead)*

Make sure that each student has a ruler and has their notebook turned to page 4. Place an example notebook under the document camera and turn to page 4. Tell the class that rulers can be used to measure lengths, widths, or heights of objects. Ask the students, “Does anyone know what units the ruler measures in?” (millimeters). Show the students which side of the ruler corresponds to millimeters. Tell students that when scientists make measurements they use the metric system. Therefore, we are going to measure the length and width of objects in millimeters, like other scientists. Ask students, what is the maximum measurement that they could make using this ruler? (300 mm)

Tell students to measure the length of an object first line up the zero mark on the end of the ruler with the end of the object that you are interested in measuring. Then follow the ruler to the other end of the object and read the measurement to the nearest whole number. As a class complete example 1 together and confirm that the eraser is 70 mm long and 24 mm wide.

Have the students complete 2 and 3 by themselves. As students are working, volunteers should walk around and help students that are struggling. Make sure the students are making their measurements in mm.

Once students have completed the measuring activity, have them share their results with the class. Once an answer is shared, have the rest of the class vote if they think the answer is correct/incorrect using thumbs up/thumbs down for agree/disagree. When a class consensus has been reached, write the correct number on the notebook under the document camera. Tell students that it is okay if their measurements differ by up to 3mm.
Tell students that now that they know how to use a ruler they can measure the height of the plants. Tell them that this skill will help them to determine which plant grew the most. In their groups the first thing that they will do is remind their group leader what question they picked to investigate as well as the variable values that they picked. They will then use this information to come up with an experimental set-up and a procedure. When designing a procedure they will start by getting plants that are 3 days old from their group leader. Once their procedure and results table are filled out they will get to start their experiment. If needed, tell students they should take their notebook and a pencil and get into their groups.

**Experimental Set-Up:**

*(7 minutes – Groups – SciTrek Volunteers)*

Once the students get to your group have them sit in boy/girl fashion. Have them tell you what question they will be investigating as well as the values of the controls and changing variables they picked. If the group struggles, show them the group notepad to refresh their memory.

Have students turn to page 5 in their notebooks and turn to page 5 of the group notepad. Ask your group what they decided was going to be their changing variable and record this on the group notepad. After, have students copy the changing variable into their notebooks.

Ask your group what controls and values they selected. Write the control on the left side of the slash and the value of the control on the right side of the slash (example: soil type / potting soil). In addition, have students copy these into their notebook.

---

**TECHNIQUE**

*Rulers*

Rules are used to measure lengths of different items.

1. **How to measure an item using a ruler:**
   1. Line up the zero mark on the ruler with one end of the item.
   2. Follow the item down the ruler.
   3. Record the measurement to the nearest whole number on the ruler at the other end of the item.
   4. Repeat.

What is the height and width of each item?

1. ![Image of a pink pebble](Image)
   - Height: 24 mm
   - Width: 20 mm

2. ![Image of a pencil](Image)
   - Height: 11 mm
   - Width: 4 mm

3. ![Image of a calculator](Image)
   - Height: 51 mm
   - Width: 45 mm

---
After going through the controls laid out on the materials page, there will be one blank left in the experimental set-up. Ask students what other information they need to include to complete their experiment. If students struggle ask them to recall what they observed during the first experiment. Students should be able to them come up with one of the following: time, soil amount, number of holes in cup. Add one control to the list with its corresponding value. An example of the experimental set-up can be seen below.

**Procedure:**

(19 minutes – Groups – SciTrek Volunteers)

Tell students they will now generate a procedure for their experiment. Ask students what a procedure is. Make sure by the end of the conversation, they know a procedure is a list of steps to conduct an experiment. Then, help students generate a procedure. Try to keep the procedure as brief as possible while still including the important information (key control values, changing variable values, and what data they will collect). For example, if light amount is the changing variable, one step of the procedure might be, “Put plants under level A) 4, B) 1, C) 0 (no light), D) 2, and E) 5 (full) lights.” Have students dictate the procedure to you while you transcribe it onto the group notepad. As each step is completed, have students copy it from the group notepad into their notebooks. Make sure that you do not continue on to the next step until each student has completed that step. An example procedure can be seen above.

**Results Table:**

(5 minutes – Groups – SciTrek Volunteers)

Fill out the variable section of the results table while students fill out the same section in their notebook. Make sure that for their controls, they only write the value of the control in Trial A and then draw a line through the remaining trials. For the changing variable, they need to write the value of the variable in each of the boxes. An example results table can be seen below.
**Experiment:**  
*(15 minutes – Groups – SciTrek Volunteers)*

Get the appropriate plants for your group’s experiment, these plants should already be labeled with your group’s color and trial letters. Give each student one of the plants and a ruler; this will be the plant that student is responsible for during the rest of the experiment. Tell students to be careful with their plant because if they break it they will not get another plant. Help students measure the initial plant height in millimeters and record this measurement in their notebooks. In addition, record all of the initial plant heights on the group notepad. Students can then measure the appropriate amount of water using a graduated cylinder and then pour the water over the top of their plant.

**For groups changing nutrient amount,** have students add the appropriate amount of nutrient to the graduated cylinder using a dropper and then use water to fill the graduated cylinder to the appropriate liquid amount. (Example, if you would like a total liquid amount of 100 mL and Trial A had 30 mL of nutrients, add 30 mL of nutrients to the graduated cylinder then add 70 mL of water to get a total liquid amount of 100 mL.)

After the height of the plant has been measured/recorded and the plants have the appropriate amount of liquid, have students put their plants under the correct lighting source.

Make sure that students copy all initial plant heights into their notebooks.

**Wrap-Up:**  
*(2 minutes – Full Class – SciTrek Lead)*

Tell students that the next time SciTrek is here they will get to measure how tall their plants have grown and get to determine the change in plant height.
Clean-Up:

Before you leave, have students attach their nametags to their notebooks and place them in the group box. Leave all plants and lights in the class; make sure that all lights are left on. Bring all other materials back to UCSB. In addition, put your lab coat back into your group box.

Day 3: Experiment/Graph/Results Summary

Schedule:

Introduction (SciTrek Lead) – 2 minutes  
Experiment (SciTrek Volunteers) – 30 minutes  
Graph (SciTrek Volunteers) – 10 minutes  
Results Summary (SciTrek Volunteers) – 16 minutes  
Wrap-Up (SciTrek Lead) – 2 minutes

Materials:

(4) Volunteer Boxes:  
☐ Student nametags  
☐ Student notebooks  
☐ Volunteer instructions  
☐ Volunteer lab coat  
☐ (8) Partial graph pieces  
☐ (2) Pencil  
☐ (2) Wet erase markers  
☐ Scotch tape  
☐ Paper towels  
☐ (5) Rulers (mm)

Other Supplies:  
☐ (4) Large group notepads  
☐ (3) Tubs to take plants back to UCSB in

Lead Box:  
☐ (3) Extra student notebooks  
☐ Lead instructions  
☐ Plants picture packet  
☐ Lead lab coat  
☐ Time card  
☐ (8) Partial graph pieces  
☐ (2) Pencils  
☐ (2) Wet erase markers  
☐ Scotch tape  
☐ Paper towels  
☐ (4) Rulers (mm)
SciTrek Notebook Pages and Notepad Pages:

**RESULTS Table**

<table>
<thead>
<tr>
<th>Variables</th>
<th>Trial A</th>
<th>Trial B</th>
<th>Trial C</th>
<th>Trial D</th>
<th>Trial E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed Type</td>
<td>Fast</td>
<td>Plant</td>
<td>Fast</td>
<td>Plant</td>
<td>Fast</td>
</tr>
<tr>
<td>Soil Type</td>
<td>Best</td>
<td>Soil</td>
<td>Best</td>
<td>Soil</td>
<td>Best</td>
</tr>
<tr>
<td>Liquid Amount</td>
<td>100 ml</td>
<td>100 ml</td>
<td>100 ml</td>
<td>100 ml</td>
<td>100 ml</td>
</tr>
<tr>
<td>Light Amount</td>
<td>Level 4</td>
<td>Level 1</td>
<td>Level 0</td>
<td>Level 2</td>
<td>Level 5</td>
</tr>
<tr>
<td>Nutrient Type</td>
<td>No</td>
<td>Nutrients</td>
<td>No</td>
<td>Nutrients</td>
<td>No</td>
</tr>
<tr>
<td>Nutrient Amount</td>
<td>No</td>
<td>Nutrients</td>
<td>No</td>
<td>Nutrients</td>
<td>No</td>
</tr>
<tr>
<td>Days</td>
<td>3 days</td>
<td>3 days</td>
<td>3 days</td>
<td>3 days</td>
<td>3 days</td>
</tr>
<tr>
<td>Initial Plant Height</td>
<td>7 mm</td>
<td>8 mm</td>
<td>8 mm</td>
<td>10 mm</td>
<td>10 mm</td>
</tr>
<tr>
<td>Final Plant Height</td>
<td>30 mm</td>
<td>41 mm</td>
<td>41 mm</td>
<td>51 mm</td>
<td>51 mm</td>
</tr>
<tr>
<td>Change in Plant Height</td>
<td>23 mm</td>
<td>30 mm</td>
<td>30 mm</td>
<td>34 mm</td>
<td>34 mm</td>
</tr>
<tr>
<td>Other Observations</td>
<td>Tall and heavy, small leaves</td>
</tr>
</tbody>
</table>

**RESULTS Graph**

My experiment shows plants in the dark grow taller than plants in the light because the plant in no light (level 5) grew 39 mm and the plant in full light (level 5) only grew 18 mm.

**RESULTS Graph and Summary**

My experiment shows plants in the dark grow taller than plants in the light because the plant in no light (level 5) grew 39 mm and the plant in full light (level 5) grew 18 mm.

**RESULTS Table**

Fill out the chart for each of your trials. For the variables that remain constant, write the value in trial A and then draw a line through each box to indicate this variable is a control.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Trial A</th>
<th>Trial B</th>
<th>Trial C</th>
<th>Trial D</th>
<th>Trial E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed Type</td>
<td>Fast</td>
<td>Plant</td>
<td>Fast</td>
<td>Plant</td>
<td>Fast</td>
</tr>
<tr>
<td>Soil Type</td>
<td>Best</td>
<td>Soil</td>
<td>Best</td>
<td>Soil</td>
<td>Best</td>
</tr>
<tr>
<td>Liquid Amount</td>
<td>100 ml</td>
<td>100 ml</td>
<td>100 ml</td>
<td>100 ml</td>
<td>100 ml</td>
</tr>
<tr>
<td>Light Amount</td>
<td>Level 4</td>
<td>Level 1</td>
<td>Level 0</td>
<td>Level 2</td>
<td>Level 5</td>
</tr>
<tr>
<td>Nutrient Type</td>
<td>No</td>
<td>Nutrients</td>
<td>No</td>
<td>Nutrients</td>
<td>No</td>
</tr>
<tr>
<td>Nutrient Amount</td>
<td>No</td>
<td>Nutrients</td>
<td>No</td>
<td>Nutrients</td>
<td>No</td>
</tr>
<tr>
<td>Days</td>
<td>3 days</td>
<td>3 days</td>
<td>3 days</td>
<td>3 days</td>
<td>3 days</td>
</tr>
<tr>
<td>Initial Plant Height</td>
<td>7 mm</td>
<td>11 mm</td>
<td>8 mm</td>
<td>10 mm</td>
<td>10 mm</td>
</tr>
<tr>
<td>Final Plant Height</td>
<td>30 mm</td>
<td>41 mm</td>
<td>41 mm</td>
<td>51 mm</td>
<td>51 mm</td>
</tr>
<tr>
<td>Change in Plant Height</td>
<td>23 mm</td>
<td>30 mm</td>
<td>30 mm</td>
<td>34 mm</td>
<td>34 mm</td>
</tr>
<tr>
<td>Other</td>
<td>Tall and heavy, small leaves</td>
</tr>
</tbody>
</table>

The independent variable is the changing variable and the dependent variables are the final observations/measurements.
Set-Up:

SciTrek Volunteer:
Set out student notebooks.
• If students are not in the classroom before SciTrek starts set out the notebooks where you want students to sit when they come in the classroom.
• If students are in the classroom when SciTrek starts set out the notebooks where you want students to sit and students will move to these spots after the introduction.

Get your groups plants and have them ready to give to students.

Introduction:
(2 minutes – Full Class – SciTrek Lead)

If needed, while you are doing the introduction have the SciTrek volunteers set out the SciTrek notebooks/nametags where they would like students to sit. Tell students that a notebook will be put on their desk which is not their notebook and they should not move it.

Ask the class to tell you what we have been working on the last two meetings. They should be able to tell you that they have been exploring plant growth and that they have found that the soil type affects the plant height and that a soil that can absorb more water allows plants to grow taller than soils that absorb less water. They should also state they designed and started to carry out an experiment to test another variable that might affect plant growth. Have each group tell you the variable that they are investigating.

Tell the class that today they are going to observe their plant growth by measuring the plant heights. Ask students how they will determine how much their plant has grown since the start of their experiments. Students should say that you can subtract the initial height of the plant from the final height of the plant. After they are finished with their experiment and recording their results, they will then use the data to make a graph to see how their changing variable has affected plant growth.

If needed, tell the students to get into their groups.

Experiment:
(30 minutes – Groups – SciTrek Volunteers)

Pass out the plants to each student, making sure that each student gets the plant that he/she was working with before. Have each student measure the height of the plant in millimeters and tell you their measurement then record these on page 6 of the group notepad under final plant height. Then have students copy the measurements onto page 6 of their notebook (see sample group notepad below).

Ask the students how they will figure out how much the plant has grown over the last couple of days. They should say that if they take the final plant height they can subtract the initial plant height and the difference will be the height that the plant has grown. As a group do the math for each of the trials in the group notepad, making sure to use the appropriate subtraction method as dictated by the teacher. Students only need to record the change in plant height in their notebooks, not the math process to determine the change.

For groups with nutrient amount as their changing variable that are using salt or sugar, large amounts of these will cause the plant to shrink. Still find the difference between the two plants. Make sure that you record it as a positive number but put a star next to it (example: 5 mm☆).

Encourage students to make observations about their plant other than plant height, such as the relative amount of liquid in each cups, color of leaves, number of leaves, etc. These can be recorded in the results table under other observations.
Graph:
(10 minutes – Groups – SciTrek Volunteers)

Once the results table has been completed and each student has every trial filled out, pass out one partial graph piece to each student and have them fill out the piece for the plant they oversaw. There is an extra partial graph piece in the group box that can be used as an example. On the bottom line, have students write the value of their changing variable (example: level 5), not the trial letter or the changing variable (example: A or light amount). This way when the pieces are rearranged, they will be able to see the values for each of the trials. Have students draw a line showing the appropriate plant height as well as write in the plant height on top of the line and then quickly shade below the line. If the plant shrunk, have them graph the positive number and put a star on the written in measurement. Once each student has completed their graph piece for their plant, have students help you arrange the partial graph pieces so that they are in increasing order as done in the example below. If your group had plants that shrunk arrange these before the plants that grew. This will make your graph look like a parabola (u-shaped). In the example experiment discussed, the trials were graphed in the following order: E, A, D, B, C. Tape the partial graphs to the group notepad so that they look like a complete graph (see example group notepad below). When taping the graph pieces to the group notepad make sure that each graph piece overlaps with the one next to it so that you only see the y-axis for the first graph piece.
After the pieces of the graph are taped into the group notepad, ask the students what their changing variable was. Record this answer for the x-axis title and have students copy this into their notebooks.

**Results Summary:**
(16 minutes – Groups – SciTrek Volunteers)

Have students summarize their findings. Challenge students to think about how their changing variable did or did not affect plant growth.

When writing their results summary, make sure that students start the statement with a claim about the trend or pattern in their data and then write “because” and use data to back up the claim. The data from this experiment is in the form of measurements.

If the values of their changing variable have an order (example: level 5 → level 4 → level 2) then that variable affected plant growth. If on the other hand there was no order for their changing variable (example level 4 → level 2 → level 5) and the difference between the plant heights for each trail is small, then that variable did not affect plant growth. If possible, try to have students generate a claim that allows them to make a prediction about something that they have not tested. An appropriate claim could be: the more fertilizer a plant has, the taller the plant. This is an appropriate claim because it allows the students to make a prediction about what would happen if new values of their changing variable were introduced. After generating a claim about the experiment, write the word “because” and follow it with supporting data (when 1 mL of fertilizer was added the plant grew 5 mm taller and when 5 mL of fertilizer was added the plant grew 25 mm taller). The supporting data should be the two most convincing data points, typically the minimum and maximum plant height.
The results summary is still valid, and important, if it shows that the changing variable tested did not affect plant growth. Even if their results summary is contrary to what you think, have students make a claim based solely on their data. Help students copy this statement into their notebooks on page 7.

Once students have filled out their results summary, have them fill in the sentence frame (page 8): “I acted like a scientist when __________.” This response should be unique for each of the students and should not be “when I did an experiment.” If students are having trouble with this sentence frame, ask them what they did during each SciTrek visit.

**Wrap-Up:**
(2 minutes – Full Class – SciTrek Lead)

Tell the students that during the next SciTrek visit they will make a poster which they will use to present their findings to the class. These posters will help us learn about what variables affect plant growth.

**Clean-Up:**

Before you leave, have students attach their nametags to their notebooks and place them in the group box. Take all plants, lights, and boxes back to UCSB. In addition, put your lab coat back into your group box.

**Day 4: Poster Making**

**Schedule:**

- Introduction (SciTrek Lead) – 2 minutes
- Experimental Discussion (SciTrek Volunteers) – 17 minutes
- Poster Making (SciTrek Volunteers) – 36 minutes
- Wrap-Up (SciTrek Lead) – 5 minutes
**Materials:**

<table>
<thead>
<tr>
<th>Materials</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(4) Volunteer Boxes:</td>
<td>☐ Student nametags</td>
</tr>
<tr>
<td></td>
<td>☐ Student notebooks</td>
</tr>
<tr>
<td></td>
<td>☐ Volunteer instructions</td>
</tr>
<tr>
<td></td>
<td>☐ Volunteer lab coat</td>
</tr>
<tr>
<td></td>
<td>☐ Poster diagram (full page)</td>
</tr>
<tr>
<td>Poster Parts:</td>
<td>☐ Scientists’ names</td>
</tr>
<tr>
<td></td>
<td>☐ Question</td>
</tr>
<tr>
<td></td>
<td>☐ Experimental set-up</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Other Supplies: | ☐ (4) Large group notepads | ☐ Poster paper tube |
| | ☐ (2) Sticker sets for how to present graph (changing light amount or water/nutrient amount) | ☐ (5) Paperclips |
| | ☐ Procedure | ☐ (2) Wet erase markers |
| | ☐ Results table | ☐ (2) Highlighters |
| | ☐ Results graph | ☐ Scissors |
| | | ☐ (2) Glues |
| | | ☐ Scotch tape |

| Lead Box: | ☐ (3) Extra student notebooks | ☐ Time card |
| | ☐ Lead instructions | ☐ (2) Pencils |
| | ☐ Plants picture packet | ☐ (5) Paperclips |
| | ☐ Poster diagram (full page) | ☐ (2) Wet erase markers |
| | ☐ Lead lab coat | ☐ (2) Highlighters |
| | ☐ Time card | ☐ Scissors |
| | | ☐ (2) Glues |
| | | ☐ Scotch tape |

| ☐ (4) Poster Part Packet with 1 packet of each poster color | |
| ☐ (2) Pencils | |

| Set-Up: | |

**SciTrek Lead:**

Ask the classroom teacher for a place to leave the student posters in the classroom.

**SciTrek Volunteer:**

Set out student notebooks.

- If students are not in the classroom before SciTrek starts set out the notebooks where you want students to sit when they come into the classroom.
- If students are in the classroom when SciTrek starts set out the notebooks where you want students to sit and students will move to these spots after the introduction.

**Introduction:**

*(2 minutes – Full Class – SciTrek Lead)*

If needed, while you are doing the introduction have the SciTrek volunteers set out the SciTrek notebooks/nametags where they would like students to sit. Tell students that a notebook will be put on their desk which is not their notebook and they should not move it.

Ask the class, “What is the class question that we are investigating?” Students should reply, “What variables affect plant growth?” Inform the students that they will be making posters to present their findings to the class. This presentation will be their chance to tell the class what their group has discovered about the class question. Tell them they should write as neatly as possible on the poster parts so that the other class members can read their poster.
Tell the groups if they have not filled in the results summary or “I acted like a scientist when ______,” they should finish these before starting on their poster.

In addition, tell students that before they start their poster they should explain the experiment they did to their volunteer along with what they found out. They should try to do this without looking at their notebooks.

If needed, tell students to get into their groups.

**Experimental Discussion:**
*(17 minutes – Groups – SciTrek Volunteers)*

If students have not finished their results summary or “I acted like a scientist when ______,” then have them complete these before discussing their experiment or starting their poster.

Have your students explain their experiment as well as their findings to you without looking at their notebooks. Ask each student in the group a question about the experiment. Questions can be about what the students did as well as what they learned. Also try to ask students to make predictions using their data about experiments that they did not do.

**Poster Making:**
*(36 minutes – Small Groups – SciTrek Volunteers)*

Pass out the writing portions (general poster parts and “I acted like a scientist when ______”) and have students write their name on them and complete them. In addition, have each student write their name on the scientists’ names part.

Use the following guidelines when assigning poster parts:

<table>
<thead>
<tr>
<th>Number of Students in Group</th>
<th>Poster Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1. Question</td>
</tr>
<tr>
<td></td>
<td>2. Experimental Set-Up</td>
</tr>
<tr>
<td></td>
<td>3. Procedure</td>
</tr>
<tr>
<td></td>
<td>4. Results Graph*</td>
</tr>
<tr>
<td></td>
<td>5. Results Summary</td>
</tr>
<tr>
<td></td>
<td>Each student gets an “I acted like a scientist when______” and picture space.*</td>
</tr>
<tr>
<td></td>
<td>Student that finishes 1st completes the results table (not presented)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>1. Question</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. Experimental Set-Up</td>
</tr>
<tr>
<td></td>
<td>3. Procedure (Presents 1st half of procedure)</td>
</tr>
<tr>
<td></td>
<td>4. Results Table (Presents 2nd half of the procedure)</td>
</tr>
<tr>
<td></td>
<td>5. Results Graph*</td>
</tr>
<tr>
<td></td>
<td>6. Results Summary</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>1. Results Table (Presents names)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. Question</td>
</tr>
<tr>
<td></td>
<td>3. Experimental Set-Up</td>
</tr>
<tr>
<td></td>
<td>4. 1st half of Procedure</td>
</tr>
<tr>
<td></td>
<td>5. 2nd half of Procedure</td>
</tr>
<tr>
<td></td>
<td>6. Results Graph*</td>
</tr>
<tr>
<td></td>
<td>7. Results Summary</td>
</tr>
</tbody>
</table>

*Give the results graph to the student that is most confident in presenting.*
Once all writing sections are completed, have students draw a picture of their experiment or how they acted like a scientist.

In the students’ notebooks, highlight and number the section that they will present. The parts should be numbered as follows: 1) scientists’ names, 2) question, 3) experimental set-up, 4) procedure, 5) results graph, and 6) results summary (see example below). Students will NOT present the results table or “I acted like a scientist when ______” parts from their poster. If a student is presenting multiple sections, use the paperclips in your group box to clip together the sections that they are reading so that when presenting, it will be easy to flip back and forth between pages.

### Changing Light Amount

The plant under light level _______ grew ________ mm.

### Changing Water/Nutrient Amount

The plant with _______ mL of _______ grew ________ mm.

Place one of the following sentence frame stickers on the top of the notebook page of the student that is completing the results graph (page 7).

**Changing Light Amount**

The plant under light level _______ grew ________ mm.

**Changing Water/Nutrient Amount**

The plant with _______ mL of _______ grew ________ mm.
Then practice reading the five sentences with that student. For the poster below, the sentence would be: The plant under light level 5 grew **40 mm**. Leave the “changing variable value” and “measurement” blanks empty. An example of the sentence frame for a group that changed the nutrient amount would be: The plant with **50 mL of salt water** grew **0 mm**. Make sure you fill in “salt water” for the student in the sentence frame but leave the “changing variable value” and “measurement” blanks empty.

As soon as students have completed some of their pieces, start gluing them onto the large poster paper **exactly** as they are arranged in the example below. Do not wait until students have completed all the pieces to start gluing them onto the poster.

Once the poster is complete, have students start practicing for the presentation. Make sure that students read from their notebooks instead of off the poster.

**Wrap-Up:**

*(5 minutes – Full Class – SciTrek Lead)*

Ask the students the following questions:

How did you act like a scientist during this project?
What did you do that scientists do?

After having a discussion about how they acted like scientists and talking about how everyone does things that scientists do in their everyday lives, tell students that they will present their findings during the next SciTrek visit and that you are looking forward to hearing about all of their experiments.

**Clean-Up:**

Before you leave, have students attach their nametag to their notebook and place them in the group box. Leave student posters in the classroom. Bring all materials back to UCSB. In addition, put your lab coat back into your group box.
Day 5: Poster Presentations

**Schedule:**

- Introduction (SciTrek Lead) – 2 minutes
- Practice Posters (SciTrek Volunteers) – 15 minutes
- Poster Presentations (SciTrek Volunteers/SciTrek Lead) – 41 minutes
- Wrap-Up (SciTrek Lead) – 2 minutes

**Materials:**

- (4) Volunteer Boxes:
  - ☐ Student nametags
  - ☐ Student notebooks
  - ☐ Volunteer instructions
  - ☐ Volunteer lab coat
  - ☐ (2) Pencil
  - ☐ (2) Paperclips
  - ☐ Highlighter

- Lead Box:
  - ☐ (3) Extra student notebooks
  - ☐ Lead instructions
  - ☐ Plants picture packet
  - ☐ Lead lab coat
  - ☐ Scotch tape
  - ☐ Teacher evaluation
  - ☐ Time card
  - ☐ (2) Sticker sets for how the present graph (changing light amount or changing water/nutrient amount)
  - ☐ (2) Pencils
  - ☐ (2) Wet erase markers
  - ☐ (4) Paperclips
  - ☐ (2) Highlighters
  - ☐ Scotch tape

*Student posters should already be in the classroom.

**SciTrek Picture Packet Page:**

![Picture of data tables showing plant growth under different conditions]
Set-Up:

SciTrek Lead:
If the classroom has a document camera, ask the teacher to use it for the notes on presentations (page 2, picture packet). If the classroom does not have a document camera, then write the class question on the board, “What variables affect plant growth?” Leave enough room to record student findings under the question.

Organize the posters so that groups that had the same changing variable present back to back.

Give the classroom teacher the “Evaluation of the SciTrek Program by Participating Teachers” form. Ask the teacher to fill this form out and give it back to you the next time you are there.

SciTrek Volunteer:
Set out the SciTrek notebooks/nametags. Today students will be sitting in their regular classroom seats during poster presentations.

Introduction:
(2 minutes – Full Class – SciTrek Lead)

Tell students that today they will present their poster to the class. Inform students that this is a common practice in science. Scientists go to conferences where they present posters about the experiments they conducted. At the end of these presentations, other scientists give them feedback on their experiments, which allows them to return to the lab with new ideas for future experiments.

Tell the students that they will have 15 minutes to discuss their experiment and results and practice presenting their poster with their group. While discussing their experiments and results students should not look at their notebooks or poster. Remind students to read from their notebooks when presenting. Tell students that after practicing they will return to their normal classroom seats.

Practice Posters:
(15 minutes – Groups – SciTrek Volunteers)

If the posters are not already in order, the lead should organize the posters so the experiments that are about the same changing variable are presented back to back.

Once students have gotten to your group have students explain what they did and what they learned from their experiment. Ask students questions to make sure that they understand what they did during their experiment. Make sure that you also have them use their results to predict what would happen for other systems that they did not test. Remind them to think about patterns or trends that they saw for their own results and apply these trends to make predictions about plant growth. For instance, if the group’s changing variable was water amount ask them to predict the height of the plant if they poured 250 mL of water over the plant (this would be an amount of water that they did not test). Possible answer: the plants would not grow any taller if you used 250 mL of water. Try to make sure that each student in your group answers one question.

Once your group has an understanding of their experiment have them practice their poster, making sure they are reading the poster parts in the correct order (scientists’ names, question, experimental set-up, procedure, results graph, and results summary). Make sure each student’s part is highlighted in their notebook. If students are reading from multiple pages, use a paperclip to clip these pages together. Remind students to read from their notebook rather than from their poster.
**Poster Presentations:**
*(41 minutes – Full Class – SciTrek Volunteers/SciTrek Lead)*

Have students return to their original class seats. Ask the class, “What is the question that we have been working on solving?” Students should tell you, “What variables affect plant growth?” Ask the class, “Why are we interested in answering this question?” Students should say that if they can determine the variables that affect plant growth, they could grow taller and healthier plants. Tell students that during the presentations you are going to take notes. Turn to page 2 in the picture packet. Tell them that they will need to tell you the groups’ changing variable after they say the question, so that you can record it. You will then record the values of the changing variable and data when they present the graph.

After each presentation, students will be given the opportunity to ask scientific questions to the presenting group to help them determine if/how the variable investigated affected plant growth and if so how. Tell them these questions are important because they will have to summarize for you what the group taught them. Therefore, their questions should focus on helping them be able to summarize the group’s findings.

Volunteers should make sure that students are quiet and respectful when other groups are presenting. When your group is presenting, go to the front of the room with them and prompt students if they do not know who talks next and remind them to read from their notebooks.

During the student question time, the SciTrek lead and/or volunteers should ask at least one question. Examples of possible questions are: “How do you know...?” or “Is there anything else you can do to get more information about your question?” Each group should answer approximately five questions (one question per student).

Below is an example of notes that the lead could have taken during the poster presentations.

![Notes Example](image)
After all poster presentations have been given, ask the class, “What did we learn about plant growth?” Have them summarize the class findings. The highlights from many experiments are seen below. Do not expect students to know highlights from experiments that were not run.

- The brighter the light, the shorter the plant (for plants under ~10 days old)
- Plants that are under brighter lights are greener and have more leaves than plants under dimmer lights
- The amount of water does not affect the height of the plant unless there is no water in the reserve cup and then the plant will die.
- The greater the amount of salt, the shorter the plant
- The greater the amount of sugar, the shorter the plant. This is because the sugar causes the soil to become sticky and the plant can no longer grow.
- The larger the amount of fertilizer the taller the plant. This effect is really small and might not be observed by students

When summarizing experiments, use students collected data and not what they should have found from the list above. Ask students what values of variables they would need to get plants to grow the tallest in ~7 days.

- Soil Type: Potting Soil
- Light Amount: Dark
- Water Amount: Any
- Nutrient amount: could use fertilizer but does not have large affect

Ask students what values of variable they would need to get plant to grow the healthiest (greenest and most leaves) in ~7 days.

- Soil Type: Potting Soil
- Light Amount: Full
- Water Amount: Any
- Nutrient amount: could use fertilizer but does not have large affect

If no one in the class did experiments on one of the variables above, then they will not know how that variable affects plant growth and do not expect them to tell you which value to use. Tell students they have taught you a lot about plant growth.

**Wrap-Up:**

*(2 minutes – Full Class – SciTrek Lead)*

Tell the students that the volunteers that have been working with them are undergraduate and graduate students that volunteer their time so that they can do experiments. Have the students say thank you to the volunteers. This is the last day with their SciTrek volunteers, therefore, they should say goodbye to them. Tell students that you will be back one more time.

Tell students to remove the paper part of their nametag from the plastic holder and that they can keep the paper nametag but need to give the plastic holder back to their SciTrek volunteer.

**Clean-Up:**

Before you leave, collect the plastic nametag holders and put them in the group box. Students can keep the paper part of their nametag. Collect notebooks and place them in the group box. Leave student posters in the classroom. Bring all materials back to UCSB. Remove tape from the lid of your group box and place inside. In addition, remove all materials from lab coat pockets, remove your nametag, unroll lab coat sleeves, and put your lab coat in the dirty clothes bag at UCSB.
Day 6: Observation Assessment/Tie to Standards/Content Assessment

Schedule:

Observation Assessment (SciTrek Lead) – 10 minutes
Tie to Standards (SciTrek Lead) – 40 minutes
Content Assessment (SciTrek Lead) – 10 minutes

Materials:

Lead Box:
- ☐ (3) Extra student notebooks
- ☐ Student notebooks
- ☐ Lead instructions
- ☐ Plants picture packet
- ☐ Lead lab coat
- ☐ (25) Observation assessments
- ☐ (25) Content Assessment
- ☐ Time card
- ☐ (2) Pencils
- ☐ (25) Rulers (mm)
- ☐ (25) Black beads

Other Materials:
- ☐ 7 Day old plant grown in gravel
- ☐ 7 Day old plant grown in potting soil
- ☐ 7 Day old plant grown in 100 mL of water
- ☐ 7 Day old plant grown in 200 mL of water
- ☐ 7 Day old plant grown in no salt
- ☐ 7 Day old plant grown in 50 mL of salt

SciTrek Notebook Pages:

I acted like a scientist when I measured the height of the plant in mm.

TIE TO STANDARDS

1. Is plant growth predictable?

You would like to grow the tallest plant, circle the values below that would allow you to do this. If the variable does not affect how tall the plant will grow then circle either.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Option 1</th>
<th>Option 2</th>
<th>Either</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Type:</td>
<td>Gravel</td>
<td>Potting Soil</td>
<td>Either</td>
</tr>
<tr>
<td>Water Amount (in Bottom Cup):</td>
<td>100 mL</td>
<td>200 mL</td>
<td>Either</td>
</tr>
<tr>
<td>Nutrients (Salt) Amount:</td>
<td>None</td>
<td>50 mL</td>
<td>Either</td>
</tr>
</tbody>
</table>

2. Do plants grow in the light? Plot the data for the plants with water and with no water in the light.

3. What do plants in the light need to grow? Water
Set-Up:

SciTrek Lead:

Collect the “Evaluation of the SciTrek Program by Participating Teachers” form from the teacher. If they have not filled out the form ask them to do it during the tie to standards activity.
If the classroom has a document camera, ask the teacher to use it for the tie to standards activity (pages 8-12, student notebook and pages 3-10, picture packet). If the classroom does not have a document camera, then tape example poster-size notebook pages to the front board.

Have 6 plants ready to show students.

Pass out notebooks to students. If you do not have time to get set-up before the start of the module ask the teacher to pass out the notebooks during the observation assessment.

At end of the day get the lab coat form the teacher.

**Observation Assessment:**
*(10 minutes – Full Class – SciTrek Lead)*

“Before we start with our activity today we want to determine how your ideas on observations are developing. One of the ways that we get program funding is by demonstrating the program effectiveness. Therefore, we need you to do your best on the assessment” Pass-out the observation assessment and a black bead to each student. Tell students to fill out their name, teacher’s name, and date at the top of the assessment. Remind the students that it is important that they fill out this assessment on their own.

Read the instructions to the students. Then read each of the statements and tell the students to circle “observation” for statements that are observations or “not an observation” for statements that are incorrect observations or statements that cannot be observations. When students are finished, have them turn over their paper. Read the two questions on the bottom of the page to students and have them answer them. After which, tell students to take three minutes to draw a picture of a scientist. When students are finished collect the assessments and black beads and verify that the student’s name is on the top of the paper.

**Tie to Standards:**
*(40 minutes – Full Class – SciTrek Lead)*

**Plant Growth Predictability (5 minutes):**

Tell the class that you enjoyed their poster presentations the last time you were there. Today we are going to revisit all of the variables that they have been investigating and determine how they affect plant growth. Have students turn to page 8 of their notebooks. Place an example notebook on the document camera and turn to page 8.

Ask the class what a prediction is. They should realize that a prediction is the best guess we are able to make about a system using previous knowledge. Ask them if they think the growth of plants is predictable. They should say yes. Tell the students that you started an experiment 7 days ago and you brought in the plants from your experiment for the class to observe. Tell the students that they will predict which of two plants grew taller for different growing conditions. Go over each of the predictions with the students. Have one student share which plant they think will be taller and why. Then have the class vote, using thumbs up/thumbs down if they agree/disagree with the student. If many students are in disagreement ask one of the students that is in disagreement what they think and why. After, show the students the two plants and have them circle the plant that grew taller in their notebook as you record the answer in the example notebook. An example can be seen below.
Tell students that they are now going to make predictions about plant growth over time for plants that were grown in the light. Inform them that you are going to record their predictions on example graphs for them to reference later. After they make predictions you will show them actual data that was collected so that they can compare their predictions with the actual data. Do not have students copy the prediction graphs into their own notebooks.

**Plants in the Light Prediction (8 minutes)**

Ask the students to predict what they think a graph would look like for a plant that was in the light and had no water. Allow a couple of students to share their answers. Ask the rest of the class if they agree/disagree with thumbs up/thumbs down. Once the class has reached an agreement use their ideas to make a graph (page 3, picture packet) and place that graph under the document camera. Typically students predict that a plant in the light with no water would not grow at all over a given amount of time. An example of this graph can be seen below on the left.

![Graphs showing plant growth](image)
Now ask the students to predict what they think a graph would look like for a plant that was in the light and had water. Allow a couple of students to share their answers. Ask the rest of the class if they agree/disagree with thumbs up/thumbs down. Once the class has reached an agreement, use their ideas to make a bar graph (page 4, picture packet) and place that graph under the document camera. Typically, students predict that a plant in the light with water would continuously grow taller throughout a given amount of time. An example of this graph can be seen above on the right.

**Effect of Light and Water on Plant Growth (9 minutes)**

Have the students turn to page 9 in their notebooks. Tell students that they are now going to look at data that you collected over the course of 15 days (page 5, picture packet) to see if their predictions were correct. (There is a half sheet of paper behind page 5 of the picture packet that can be used to cover the data to allow you to reveal the points one by one.) Tell students that you used the same experimental set-up as they used for their own experiments. Have students look at the data in the table for “light/no water” and ask them how tall the plant was on day 0. They should respond 0 mm. Show them where 0 mm is on the graph and draw a line and write the numeric value on top of the line. Repeat this process for the other three points. Then have students explain what happened and what these means for plant growth. Students should notice that no plant growth took place for the seed that was in the light with no water. Therefore, plants need either light or water to grow.

Place the class prediction graph (page 3, picture packet) over the example notebook to have students compare their prediction to the actual results picture below on right.
Tell the students that we are now going to plot the data for “light/water” (page 5, picture packet). Ask the students how tall the plant was on day 0. They should respond 0 mm. Put your finger at zero and tell the students to tell you to stop once you reach the appropriate level for day 0. Once you have reached the level draw a line. Ask the students how tall the plant was on day 5. They should respond 23 mm. Repeat the process by putting your finger at zero and telling the students to tell you to stop once you reach the appropriate level for day 5. Once you have reached the level draw a line, and write the numeric value over the line and quickly shade below. Tell the students when they are shading in they should try to beat how fast you shaded in the area. Repeat the process for the other two data points. Example student work is seen above on the left. After the data has been plotted, ask the students what happened to the seed in the light with water. Students should notice that with light and water the plant continued to get taller until day 15. Place the class prediction graph (page 4, picture packet) over the example notebook to have students compare their prediction to the actual results.

Ask the students, “What did plants in the light need to grow?” Students should see that plants in the light needed water to grow. Record “water” for question number 3.

Now tell students that they are going to make predictions about plant growth over time for plants that were grown in the dark. Inform them that you are going to record their predictions on example graphs for them to reference later. After they make predictions you will show them actual data that was collected so that they can compare their predictions with the actual data. Do not have students copy the prediction graphs into their own notebooks.

**Plants in the Dark Predictions (4 minutes)**

Have students predict what they think a graph would look like for a plant that was in the dark and had no water. Allow a couple of students to share their answers. Ask the rest of the class if they agree/disagree with thumbs up/thumbs down. Once the class has reached an agreement, use their ideas to make a bar graph (page 6, picture packet) and place that graph under the document camera. Typically, students predict that a plant that was in the dark with no water would not grow over a given amount of time. An example of this graph can be seen below on the left.

![Graphs showing plant growth in light and water vs. dark and no water](image-url)
Ask the students to predict what they think a graph would look like for a plant that was in the dark and had water. Allow a couple of students to share their answers. Make sure that the students state whether the plant in the dark with water would be taller or shorter than the plant in the light with water. Ask the rest of the class if they agree/disagree with thumbs up/thumbs down. Once the class has reached an agreement, use their ideas to make a graph (page 7, picture packet) and place that graph under the document camera. Typically, students predict that a plant in the dark with water will grow, but be smaller than the plant in the light with water. An example of this graph can be seen above on the right.

After you have completed the graph predictions tell the class that they are now going to graph the data that you collected to see if their predictions are correct (page 8, picture packet). (There is a half sheet of paper behind page 5 of the picture packet that can be used to cover parts of the data.)

**Effect of Darkness and Water on Plant Growth (7 minutes)**

Have the students turn to page 10 in their notebooks. Tell the students that we are now going to plot the data for “dark/no water.” Have students graph the data for “dark/no water” on their own. SciTrek volunteers can walk around and help students if needed. While students are plotting the data remove the notebook from the document camera and plot the data on the example notebook. After ~3 minutes put the example notebook under the document camera and have students check their graph. Example student work is seen below. After the data has been plotted, ask the students what happened to the seed in the dark without water. Students should notice that there is no plant growth in the dark with no water. Ask students how this data compares to plants in the light with no water. They should see that the data is the same. Place the class prediction graph (page 6, picture packet) over the example notebook to have students compare their prediction to the actual results.

![Graph of plant growth](image)

4. Do plants grow in the dark? Plot the data for the plants with water and with no water in the dark.

5. What did plants in the dark need to grow? _**WATER**_
Tell the students that we are now going to plot the data for “dark/water” (page 8, picture packet). Have students graph the data for “dark/water” on their own. SciTrek volunteers can walk around and help students if needed. While students are plotting the data, remove the notebook from the document camera and plot the data on the example notebook. After ~3 minutes put the example notebook under the document camera and have students check their graph. Example student work is seen above. After the data has been plotted ask the students what happened to the seed in the dark with water. Students should notice that in the dark with water the plant continued to get taller until day 15. Ask students how this data compares to plants in the light with water. Students should see that the plant in the light did not grow as tall or as fast as the plant in the dark. Place the class prediction graph (page 7, picture packet) over the example notebook to have students compare their prediction to the actual results.

Ask the students, “What did plants in the dark need to grow?” Students should see that plants in the dark needed water to grow from the results and from their graphs. Record “water” for question number 5.

Ask students why they think plants in the dark with water grow faster than plants in the light with water. Have a couple students share their responses with the class. Make sure by the end of the conversation students understand that the plants in the dark might be growing at a faster rate to try to reach the light. Then ask students what they think the plants in the dark and the light look like over the course of the 15 days. Have student share their answers.

Matching Plant Growth Pictures (4 minutes)

Have students turn to page 11 in their notebooks. Tell student that you took pictures of the plants in the light with water (question 6) and pictures of the plants in the dark with water (question 7) during the 15 days of your experiment. But your pictures got out of order and you would like them to help you get them back in the correct order. Put page 9 of the picture pack under the document camera which shows colored pictures of the plants. Tell students that the plants need to be matched to the correct day. Have one student share what they think is the correct order. Then have the class vote, using thumbs up/thumbs down if they agree/disagree with the student. If many students are in disagreement ask one of the students that is in disagreement what they think and why. Once a class consensus has been reached record the correct number of days under each picture.

Repeat the process for the plants that were in the dark, question 7 by using the colored pictures of the plants in the dark (page 10, picture packet). See example above on the right.
Ask students how the appearance of plants differs when they were in the light and in the dark. Students should respond that the plants that were in the dark were taller but that they were also less green, skinny, and had very small leaves. Students should say that the plants that were in the light had green leaves that were very large.

**Ideal Conditions for Plant Growth (3 minutes)**

Have the students turn to page 12 in their notebooks.

Ask students if they think water or light is more important for plant growth and why. One possible student answer is water because plants were not able to sprout without water but they were able to sprout without light. If needed turn back to the graphs on page 9 and 10 of the student notebook. Circle water for the answer to question 8.

Ask the students, “Which do you predict to be taller at day 10, a plant in the light with water, or a plant in the dark with water?” Students can look back at the data that they graphed if they need help answering this question. Students should realize that at day 10 a plant in the dark would grow taller because this plant is using all of its energy to find light. Circle the correct answer for question 9.

Now ask the students, “What plant would you predict to be healthier (greenest and more leaves) at day 10, a plant in the light with water or a plant in the dark with water?” Students should realize that a plant in the light with water would be healthier (greener and more leaves) than a plant with water in the dark. Circle the correct answer for question 10.

Ask students, “What conditions are needed in order for plants to live the longest and healthiest life?” Students should now realize from previous discussions and from the data that in order for a plant to live the healthiest and longest life they would need to be in the light and have water. Record these conditions for question 11.

**Variables (time permitting)**

Do this section with the class only if there is time remaining. Make sure to leave 10 minutes for the content assessment.
Ask the students what is the definition of a variable. They may be able to tell you that a variable is something we can change about an experiment to learn more about a system. Write the definition (something you can change) as the answer to number 12. Ask students what were some examples of the variables that they changed in their own experiments (water amount, nutrient amount, light amount).

12. What is a variable? **something in an experiment that can be changed.**

Now that all students know the definition of a variable, ask them what other variables might affect plant growth. Tell them to think of variables that they might have seen out in their own gardens. A few examples of these are shown below along with an example of student work. Record two of these in the example notebook.

Temperature
Type of soil
Size of container
Type of plant
Amount of soil

<table>
<thead>
<tr>
<th>13. What other variables might affect plant growth? (List at least 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. soil amount</td>
</tr>
<tr>
<td>2. temperature</td>
</tr>
</tbody>
</table>

Tell students that this module has taught you that plant growth is predictable and that plants need water and light to grow and be healthy. In addition, they have given you a few ideas for other experiments that you may be able to try out another time. Tell students that before you leave that you would like to see how their science content knowledge has changed.

**Content Assessment:**
(10 minutes – Full Class – SciTrek Lead)

Tell students to close their SciTrek notebooks and to place the notebook in the corner of their desk. Pass out the Content Assessment and a ruler to each student. Tell students to put their name, teacher’s name, and date on the top of their paper. During the assessment remind students to work by themselves. Read each of the content questions to the students and have them select/fill out the correct answer. As soon as students have completed question 1, collect the rulers. When students are finished collect the assessments and verify that they have written their name on the assessment.

Tell the students that you have enjoyed working with them and that you hope they continue to see themselves as scientists and explore the world around them.

**Clean-Up:**

Bring all materials back to UCSB.
**Extra Practice Solutions:**

**EXTRA PRACTICE**

Observations: A description using your **5 Senses**

Circle **Observation** if the statement is an observation you can make about the picture. Circle **Not an Observation** if the statement is not an observation you can make about the picture.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Observation</th>
<th>Not an Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The boy is smiling.</td>
<td>Observation</td>
<td>Not an Observation</td>
</tr>
<tr>
<td>2. The boy is wearing a black shirt.</td>
<td>Observation</td>
<td>Not an Observation</td>
</tr>
<tr>
<td>3. The measuring cup is taller than the oil bottle.</td>
<td>Observation</td>
<td>Not an Observation</td>
</tr>
<tr>
<td>4. Cooking is exciting.</td>
<td>Observation</td>
<td>Not an Observation</td>
</tr>
<tr>
<td>5. There are equal number of measuring cups and bottles.</td>
<td>Observation</td>
<td>Not an Observation</td>
</tr>
<tr>
<td>6. The boy's hair is black.</td>
<td>Observation</td>
<td>Not an Observation</td>
</tr>
<tr>
<td>7. The boy is making something to eat.</td>
<td>Observation</td>
<td>Not an Observation</td>
</tr>
</tbody>
</table>