Han Research Group - Members

  • Past Member (Postdoctoral Researcher)

 

Present: Associate Professor, Materials Science and Engineering Department, İzmir Institute of Technology, Turkey.

  • Past Member (Graduate Student Researcher)

 

Present: Senior Online Content Developer, The MathWorks.

  • Postdoctoral Researcher

 

Ryan's research focuses on the interface between proteins and the surrounding hydration water in order to better understand how hydration water modifies the protein function. By quantifying the motion of the protein as well as the motion of the water, he aims to address the energetic coupling between a protein and its solvating hydration water.

 

  • (805) 893-2792
  • PSBN 4623D
  • Past Member (Undergraduate Student Researcher)

 

Present: Research Associate, Gritstone Oncology

  • Graduate Student Researcher

 

Shona is coadvised by Prof. Bradley Chmelka (ChE) and Prof. Songi Han (DCB). She is investigating the synthesis and optimization of non-precious metal heteroatom-containing porous carbon materials. These conductive graphitic materials have proven to be both comparable to industrially employed oxygen reduction reaction catalyzing material in fuel cells, and promising grey water filtration materials. Additionally, she is investigating the structuring of conductive polymers for use in solar panel like applications.

  • (480) 734-7610
  • Engineering 2 3313
  • Visiting Researcher

Present: Senior Scientist, Johannes Gutenberg University Mainz, Germany

  • Undergraduate Student Researcher

 

My main research goal is to understandthe effect of surfactants and hydration on membrane protein functions. We are currently studying the membrane protein proteorhodopsin (PR) because it is easily characterized by its optical properties and is a good model protein for other membrane proteins. We are aiming to modulate PR by adjusting the external and internal surface hydration while in lipid vesicles using different surface active species.

  • (626) 283-0587
  • PSBN 4650A
  • Past Member (Postdoctoral Researcher & Project Scientist)

 

Present: Senior Research Scientist, Colgate-Palmolive

  • Past Member (Graduate Student Researcher)

 

Jessica's research in the Han Lab focused on high field electron paramagnetic resonance for the study of biological systems. This research helped build a better understanding of the processes that are important for the systems of spins at high field, aiming to develop new methods for styding biological systems. Jessica was developing a new tool for measuring distances in membrane proteins that will enhance their study of protein structure and dynamics. Under Mark Sherwin's guidance, she also helped develop the UCSB electron free laser as a tool for high field EPR.

 

Present: Design Verification Test Engineer III, Karl Storz Imaging

 

  • Past Member (Graduate Student Researcher)

 

Present: Postdoctoral Researcher, University of Colorado, Boulder (Advisor: Prof. Thomas Perkins)

  • Postdoctoral Researcher

 

Asif's main focus is method development and application of solid-state dynamic nuclear polarization (DNP) enhanced NMR to study biosolids, in particular aggregation intermediates of Tau proteins. In addition to this, understanding electron spin dynamics under non-continuous microwave irradiation condition is another major goal in the pursuit of improving DNP efficiency in power limited and faster magic-angle spinning frequency regime.

  • Past Member (Graduate Student Researcher)

 

Neil focused on tau protein which aggregates to form long fibers inside neurons in the brain. He worked on understanding the early structural mechanism of the tau aggregation pathway. Tau aggregation is known to be associated with several neurodegenerative diseases known as Tauopathies which also include Alzheimer’s disease. By using double electron electron resonance (DEER), Neil was able to look at conformational changes both before and after inducing aggregation. Through tracking and characterizing specific conformational intermediates, it could be possible to locate structurally distinct targets for the treatment of tau related diseases.

 
  • Past Member (Postdoctoral Researcher)

 

Present: Project Manager, Infineon Technologies, Germany.

  • Postdoctoral Researcher

Yann's research focuses on protein aggregation which is involved in many diseases, such as Alzheimer's Disease, Parkinson's Disease, and others. His aim is to understand why proteins aggregate and to explain how the complex process of aggregation takes place. Yann is particularly interested in the earliest stages of aggregation.

  • PSBN 4653
  • Past Member (Postdoctoral Researcher)

 

Present: Assistant Professor, Chemistry Department, Syracuse University

  • Visiting Professor

Present: Associate Professor, Technical University of Munich, Germany

  • Undergraduate Student Researcher

 

Andrew is working on elucidating the pathway of the tau protein’s aggregation into fibers, the cause of neurodegenerative diseases known as Tauopathies, including Alzheimer's disease. He assists with DEER spectroscopy distance measurements, ThT fluorescence, and small peptide production using molecular biology. In addition, he is in charge of creating tau mutants via site-directed mutagenesis, expressing and purifying these mutants, and preparing them for magnetic resonance experiments. One of his interests lies in optimizing spin-labelling efficiency for doubly spin-labelled IDPs, which could cut the time of DEER experiments in half. In doing this, he models the kinetics for, and studies the effects of solvent conditions on, multiple chemical reactions.

Chung-Ta Han
  • Graduate Student Researcher

 

Chung-Ta focuses on how different environmental factors affect transmembrante protein function. He is working on the development of a distance measuring tool between protein helices that will allow him and his team to study how protein functions are modulated through the approach of protein structure dynamics.

  • Past Member (Postdoctoral Researcher)
  • Past Member (Graduate Student Researcher)

 

Present: Postdoctoral Researcher, National Institutes of Health

  • Postdoctoral Researcher

Sheetal's research focuses on the methods, development, and applications of DNP and NMR. His doctoral focus was in solid-state NMR, and now he has been working with pulsed DNP methods to improve the technique he used during his doctoral program. Presently, he is involved primarily in projects related to the instumentation and applications of DNP and NMR. 

  • Visiting Professor

Present: Assistant Professor, Hokkaido University, Japan

  • Postdoctoral Researcher

Ilia's main project involves technique development for high field EPR and DNP (at 7T). Presently, Ilia and his team are developing new approaches for more efficient DNP using unique capabilities of their spectrometer capable of generating arbitrary shaped pulses at 200 GHz. 

The second project Ilia works on is part of large multidisciplinary collaboration dedicated to development of underwater adhesives based on mimicking the adhesives used by mussels in the ocean. They employ a range of techniques such as confocal microscopy, microrheology, EPR and Overhauser DNP to characterize the material and molecular properties of recently discovered adhesive coacervate phases.

  • (805) 893-2792
  • PSBN 4623D
  • Past Member (Graduate Student Researcher)

 

Present: Founder and CEO of OTOjOY LLC

  • Past Member (Postdoctoral Researcher)

 

Present: Senior Research Scientist, Schlumberger-Doll Research

  • Graduate Student Researcher

 

Tim's aim is to use recently developed arbitrarily waveform generators to improve the current pulsed EPR experiments such as DEER, DQC, and SIFTER. He also aims to make potentially more effective experiments possible. The primary application of his work is to look at distances across proteins particularly for aggregating systems. He is trying to improve the study of distances on aggregating systems, especially on the model system of tau protein.

  • (805) 893-2792
  • PSBN 4614
  • Past Member (Undergraduate Student Researcher)

 

Present: Graduate Student Researcher, NSF Fellow, Stanford University (Advisor: Prof. Rajat Rohatgi)

  • Graduate Student Researcher

 

Alisa’s research focuses on the interface of EPR, NMR, and dynamic nuclear polarization (DNP). She is working on hardware development for static DNP at high magnetic fields as well as doing mechanistic studies to better understand how static DNP is influenced by the electron environment and experimental conditions. These findings can then be used to optimize nuclear signals for materials and biological studies.

  • (805) 893-2792
  • PSBN 4623C
  • Graduate Student Researcher
  • PSBN 4623B
  • Graduate Student Researcher

 

Yanxian currently focuses on the complex coacervation of intrinsically disordered protein (IDP) and RNA. He applies three different methods to his research including magnetic resonance-based techniques to probe conformation and dynamics of IDP and RNA, polymer and colloid characterization approaches on the properties of complex coacervate, and bioinformatic approaches on predicting complex coacervation.

  • Past Member (Graduate Student Researcher)

 

Present: Assistant Professor, St. Mary's College of California

  • Past Member (Graduate Student Researcher)

 

Alicia’s research focuses on instrument design and pushing the technique of NMR, DNP and EPR, with a specific focus designing an MAS-NMR probe that has DNP and EPR capabilities at temperatures below 90 K. Encompassed in this probe design research are fundamental studies on quantifying absolute enhancement factors from various nitroxide radicals and how the electron spin dynamics affect the DNP mechanism, particularly under magic angle spinning NMR. This work also involves applications to heterogeneous catalytic materials, where surface enhanced NMR through DNP can help differentiate the surface species from the bulk of a material.

 

Present: Postdoctoral Researcher, Centre de Résonance Magnétique Nucléaire (CMRN), Lyon, France (Advisor: Prof. Anne Lesage)

  • Past Member (Graduate Student Researcher)

 

Present: Principal Scientist, Korimako Chemical Limited, New Zealand

  • Graduate Student Reseacher

 

Kendrick is coadvised by Prof. Michelle O'Malley (ChE) and Prof. Songi Han (DCB). His project gives him a strong background in molecular cloning for site-directed mutagenesis, protein expression using E. coli and S. cerevisiae, membrane protein purification with the use of detergent micelles and relevant chromatography techniques (IMAC, affinity, and size exclusion), biophysical techniques such as EPR (including quantitative EPR and power saturation) and DEER, as well as basic knowledge into computational techniques such as MATLAB, PyMOL, Mathematica, etc. for data processing. He also has strong interests in medicine, drug discovery, pharmacology, and neurology.

  • PSBN 4650C
  • CNSI 2416A
  • Past Member (Graduate Student Researcher)

 

Present: Research Associate - Formulation Development, Regeneron Pharmaceuticals, Inc.

  • Past Member (Graduate Student Researcher)

 

Present: Assistant Professor, Massachusett Institute of Technology

  • Past Member (Graduate Student Researcher)

 

Present: Senior Scientist, Abzena

  • Past Member (Undergraduate Student Researcher)
  • Past Member (Postdoctoral Researcher)

 

Present: Foreign Affairs Officer and AAAS Science and Technology Policy Fellow, U.S. Department of State

  • Past Member (Graduate Student Researcher)

 

Nikki was coadvised by Prof. Michelle O'Malley (ChE) and Prof. Songi Han (DCB). She worked on characterizing pharmaceutically relevant membrane protein complexes to link changes in structure and dynamics to function. Namely, she worked with a G protein-coupled receptor called the adenosine A2a receptor to elucidate structural details and functional consequences of homo-dimerization. The A2a receptor regulates cardiac function and several processes within the central nervous system; the outcome of this research will facilitate improved rational drug design to target A2a receptor oligomers in the treatment of disorders such as inflammation, fibrosis, schizophrenia and Parkinson's disease.

Pages