Han Research Group - Members

Graduate Students

  • Graduate Student Researcher

 

Shona is coadvised by Prof. Bradley Chmelka (ChE) and Prof. Songi Han (DCB). She is investigating the synthesis and optimization of non-precious metal heteroatom-containing porous carbon materials. These conductive graphitic materials have proven to be both comparable to industrially employed oxygen reduction reaction catalyzing material in fuel cells, and promising grey water filtration materials. Additionally, she is investigating the structuring of conductive polymers for use in solar panel like applications.

  • (480) 734-7610
  • Engineering 2 3313
Chung-Ta Han
  • Graduate Student Researcher

 

Chung-Ta focuses on how different environmental factors affect transmembrante protein function. He is working on the development of a distance measuring tool between protein helices that will allow him and his team to study how protein functions are modulated through the approach of protein structure dynamics.

  • Graduate Student Researcher

 

Tim's aim is to use recently developed arbitrarily waveform generators to improve the current pulsed EPR experiments such as DEER, DQC, and SIFTER. He also aims to make potentially more effective experiments possible. The primary application of his work is to look at distances across proteins particularly for aggregating systems. He is trying to improve the study of distances on aggregating systems, especially on the model system of tau protein.

  • (805) 893-2792
  • PSBN 4614
  • Graduate Student Researcher

 

Alisa’s research focuses on the interface of EPR, NMR, and dynamic nuclear polarization (DNP). She is working on hardware development for static DNP at high magnetic fields as well as doing mechanistic studies to better understand how static DNP is influenced by the electron environment and experimental conditions. These findings can then be used to optimize nuclear signals for materials and biological studies.

  • (805) 893-2792
  • PSBN 4623C
  • Graduate Student Researcher
  • PSBN 4623B
  • Graduate Student Researcher

 

Yanxian currently focuses on the complex coacervation of intrinsically disordered protein (IDP) and RNA. He applies three different methods to his research including magnetic resonance-based techniques to probe conformation and dynamics of IDP and RNA, polymer and colloid characterization approaches on the properties of complex coacervate, and bioinformatic approaches on predicting complex coacervation.

  • Graduate Student Reseacher

 

Kendrick is coadvised by Prof. Michelle O'Malley (ChE) and Prof. Songi Han (DCB). His project gives him a strong background in molecular cloning for site-directed mutagenesis, protein expression using E. coli and S. cerevisiae, membrane protein purification with the use of detergent micelles and relevant chromatography techniques (IMAC, affinity, and size exclusion), biophysical techniques such as EPR (including quantitative EPR and power saturation) and DEER, as well as basic knowledge into computational techniques such as MATLAB, PyMOL, Mathematica, etc. for data processing. He also has strong interests in medicine, drug discovery, pharmacology, and neurology.

  • PSBN 4650C
  • CNSI 2416A
  • Graduate Student Researcher

 

Alex's research focuses on hydration on a molecular level. The question he is most concerned with is how and why are hydrophilic surfaces hydrated in both biological systems as well as non-biological or inorganic systems? He is working on solving this mystery by performing DNP measurements and surface force measurements. Apart from this, he works on the correlattion of measurements of water diffusivity with surface forces specifically for hydrated hydrophilic surfaces.

Tarnuma Tabassum
  • Graduate Student Researcher

 

Tarnuma is coadvised by Prof. Susannah Scott (ChE) and Prof. Songi Han (DCB). She works on synthesis and characterization of heterogeneous catalytic systems using EPR techniques. Using a highly sensitive technique like EPR may allow better understanding of some of the more elusive mechanisms involved in these systems. This information can be applied to improve factors such as catalytic activity, efficiency, and selectivity. She is currently focusing on understanding supported vanadium- and rhenium-based systems which are widely used in olefin metathesis/polymerization reactions.

  • Graduate Student Researcher
  • Graduate Student Researcher
Blake Wilson
  • Graduate Student Researcher

 

Blake is coadvised by Prof. Mark Sherwin (Physics) and Prof. Songi Han (DCB). His focus is to work on developing high field EPR methods and performing high field EPR on systems to learn about the behavior of materials in a high field. By doing this, he helps build a better understanding of the processes that are important for the systems of spins at high field, aiming to develop new methods for studying biological systems. Under Mark Sherwin's guidance, Blake has also helped develop the UCSB electron-free laser as a tool for high field EPR.

 

  • Graduate Student Researcher

 

Kate focuses on understanding the aggregation of tau, an intrinsically disordered protein (IDP) implicated in neurodegenerative diseases including Alzheimer`s Disease. She is interested in how tau can form extraordinarily stable amyloid fibrils, and aim to understand its aggregation behavior and seeding from a structural point of view. Currently, she is working on (1) seeding tau monomer with tau amyloid fibrils and (2) investigating the amyloid structure and fibril stability. She utilizes a number of biophysical techniques in her projects including ThT fluorescence, EPR, and DEER. With the background of polymer materials and engineering, she can provide new insights into biochemical and biophysical problems. 

  • PSBN 4653

Postdoctoral Researchers

  • Postdoctoral Researcher

 

Ryan's research focuses on the interface between proteins and the surrounding hydration water in order to better understand how hydration water modifies the protein function. By quantifying the motion of the protein as well as the motion of the water, he aims to address the energetic coupling between a protein and its solvating hydration water.

 

  • (805) 893-2792
  • PSBN 4623D
  • Postdoctoral Researcher
  • Postdoctoral Researcher

Yann's research focuses on protein aggregation which is involved in many diseases, such as Alzheimer's Disease, Parkinson's Disease, and others. His aim is to understand why proteins aggregate and to explain how the complex process of aggregation takes place. Yann is particularly interested in the earliest stages of aggregation.

  • PSBN 4653
  • Postdoctoral Researcher

Sheetal's research focuses on the methods, development, and applications of DNP and NMR. His doctoral focus was in solid-state NMR, and now he has been working with pulsed DNP methods to improve the technique he used during his doctoral program. Presently, he is involved primarily in projects related to the instumentation and applications of DNP and NMR. 

  • Postdoctoral Researcher

Ilia's main project involves technique development for high field EPR and DNP (at 7T). Presently, Ilia and his team are developing new approaches for more efficient DNP using unique capabilities of their spectrometer capable of generating arbitrary shaped pulses at 200 GHz. 

The second project Ilia works on is part of large multidisciplinary collaboration dedicated to development of underwater adhesives based on mimicking the adhesives used by mussels in the ocean. They employ a range of techniques such as confocal microscopy, microrheology, EPR and Overhauser DNP to characterize the material and molecular properties of recently discovered adhesive coacervate phases.

  • (805) 893-2792
  • PSBN 4623D

Undergraduate Students

  • Undergraduate Student Researcher

 

My main research goal is to understandthe effect of surfactants and hydration on membrane protein functions. We are currently studying the membrane protein proteorhodopsin (PR) because it is easily characterized by its optical properties and is a good model protein for other membrane proteins. We are aiming to modulate PR by adjusting the external and internal surface hydration while in lipid vesicles using different surface active species.

  • (626) 283-0587
  • PSBN 4650A
  • Undergraduate Student Researcher

 

Andrew is working on elucidating the pathway of the tau protein’s aggregation into fibers, the cause of neurodegenerative diseases known as Tauopathies, including Alzheimer's disease. He assists with DEER spectroscopy distance measurements, ThT fluorescence, and small peptide production using molecular biology. In addition, he is in charge of creating tau mutants via site-directed mutagenesis, expressing and purifying these mutants, and preparing them for magnetic resonance experiments. One of his interests lies in optimizing spin-labelling efficiency for doubly spin-labelled IDPs, which could cut the time of DEER experiments in half. In doing this, he models the kinetics for, and studies the effects of solvent conditions on, multiple chemical reactions.